Texte

Dauerhafte URI für die Sammlunghttps://openumwelt.de/handle/123456789/24

Listen

Suchergebnisse

Gerade angezeigt 1 - 4 von 4
  • Veröffentlichung
    Monitoring von Pinguinkolonien in der Antarktis mithilfe von Fernerkundungsdaten
    (Umweltbundesamt, 2017) Mustafa, Osama; Esefeld, Jan; Grämer, Hannes; Thüringer Institut für Nachhaltigkeit und Klimaschutz (Jena); Universität (Jena). Arbeitsgruppe Polar- & Ornitho-Ökologie; Deutschland. Umweltbundesamt; Hertel, Fritz
    Vor dem Hintergrund der bereits punktuell beobachteten Bestandsveränderungen und Verschiebungen von Pinguinbrutplätzen im Zusammenhang mit dem globalen Klimawandel und der unterschiedlichen Verfügbarkeit von Nahrung erscheint ein möglichst flächendeckendes Monitoring der antarktischen Pinguine sinnvoll. Der vorliegende Bericht soll hierzu einen methodischen Beitrag leisten. Aufgrund der sehr großen Zahl von Kolonien und der in der Regel schwierigen Zugänglichkeit können Vor-Ort-Zählungen in Bezug auf die Größe der Brutpopulation stets nur Stichprobencharakter besitzen. Außerdem ist davon auszugehen, dass es eine nicht unbeträchtliche Anzahl bisher unbekannter Kolonien gibt. Ein weitestgehend umfassendes Monitoring erscheint daher nur auf der Basis von Fernerkundungsdaten möglich. Möglichst alle Pinguinkolonien der Antarktis detektieren zu können, werden Satellitendaten benötigt, die aufgrund der enormen Datenmengen sehr günstig zu akquirieren sind und zum anderen auch flächendeckend vorliegen. In dieser Untersuchung stellten sich die erst seit 2013 verfügbaren Landsat 8-Daten als die geeignetsten für diese Aufgabe heraus. Diese haben im Gegensatz zu dem Vorgänger Landsat 7, der seit Mai 2003 einen Fehler am sogenannten Scan-Line-Corrector aufweist, den großen Vorteil, dass die komplette Aufnahme ausgewertet werden kann, was eine höhere zeitliche Abdeckung der antarktischen Küstengebiete erlaubt. Wenn hingegen die Größe der Kolonien genau bestimmt und kleinräumige Veränderungen detektiert werden sollen, werden Satellitendaten benötigt, die eine sehr hohe räumliche und zeitliche Auflösung haben. In einem solchen Fall haben sich hochaufgelöste, multispektrale Satellitendaten mit Bodenauflösungen von unter 60 cm als am geeignetsten erwiesen. Erstmals wurden auch die hochaufgelösten VNIR-Daten des Worldview 3-Satelliten erfolgreich getestet. Zur Durchführung der Analysen wurden 12 hochaufgelöste und über 50 mittelaufgelöste multispektrale Satellitenaufnahmen der Testgebiete beschafft. Insbesondere gelang es trotz der häufigen Bewölkung in der Saison 2014/15 vier und in der Saison 2015/16 drei hochaufgelöste weitgehend wolkenfreie Aufnahmen von Ardley Island für intrasaisonale Untersuchungen zu akquirieren. Mit Hilfe dieser Daten wurde eine Reihe von Methoden auf ihre Eignung zur Detektion von hoch- und mittelaufgelösten Satellitenaufnahmen hin überprüft. Als schwierig stellte sich die Klassifikation des Guanos in den hochaufgelösten Aufnahmen heraus. Besonders der dunkel erscheinende Guano konnte kaum mit den getesteten Methoden detektiert werden. Im Gegensatz dazu ließ sich der hellere, orange-rötlichen Guano gut klassifizieren. Prinzipiell zeigte sich, dass die Klassifikationen bei der eher kontinental gelegen Cape Bird-Kolonie genauer waren als bei Adélie Land, was auf die relativ großen Flächen dunklen Guanos und der großen Variabilität der Geomorphologie und Vegetation auf Ardley Island zurückzuführen ist. Bei den untersuchten Methoden zeigte sich, dass die Maximum-Likelihood- und die ACE-Klassifikation die besten Ergebnisse für die Detektion von Guano in hochaufgelösten Aufnahmen lieferten. Beim Vergleich der Satellitenaufnahmen mit den Bodenkartierungen wurde auch festgestellt, dass es auf Ardley Island nicht möglich ist, alle Nestgruppen in Satellitenaufnahmen zu identifizieren, auch nicht manuell. Gute Ergebnisse wurden mit der ACE- und SAM-Klassifizierung bei den mittelaufgelösten Landsat 8-Aufnahmen der kontinentalen und maritimen Antarktis erreicht. Beiden Methoden scheinen für eine automatisierte Klassifizierung der gesamten Antarktis geeignet. Das eine automatische Detektion von Adéliepinguinkolonien der kontinentalen und auch der maritimen Antarktis mit Landsat 7-Aufnamen möglich ist, wurde bereits von Schwaller et al. (2013b) und Lynch & Schwaller (2014) eindrucksvoll bewiesen. Um die Aussagekraft bzw. die Genauigkeit der aus den Satellitenbildern gewonnenen Informationen beurteilen zu können, werden möglichst genaue Bodenkontrolldaten benötig. Vier verschiedene Methoden zur Schaffung solcher Referenzdaten wurden in diesem Projekt untersucht und miteinander verglichen. Die Panoramafotografie ist die schnellste Methode, liefert aber nur relativ ungenaue Ergebnisse, ähnlich wie die GPS-basierte Teilkartierung. Mit der GPS-basierten Vollkartierung erfolgt hingegen die genauste Bestimmung der Brutpaarzahlen aller untersuchten Methoden. Diese benötigt aber auch die meiste Zeit und hat den Nachteil, dass die brütenden Pinguine am stärksten gestört werden. Einen Mittelweg bietet die Kartierung mit sehr hochaufgelösten UAV-Orthophotomosaiken, mit der in kurzer Zeit große Gebiete untersucht werden können. Es wurde gezeigt, dass RGB-Orthophotomosaike am geeignetsten sind um die Brutpaare zu identifizieren, während sich NIR-Orthophotomosaike besonders für die Detektion des Guanos und der Vegetation eignen. Thermalinfrarot-Orthophotomosaike haben ein großes Potenzial bei der Identifizierung von Pinguinen, wenn diese sich auf oder neben einem Nest befinden. Die Methode ist aufgrund der geringen Auflösung der Thermalsensoren jedoch noch nicht praxistauglich. Erstmalig fand eine detaillierte Untersuchung des Störungspotenzials der UAV-gestützten Kartierung statt. Das Ergebnis zeigt, dass Überflughöhen von mehr als 50 m über Grund (entspricht der minimalen Flughöhe der UAV-Kartierungsflüge) nur geringe Verhaltensreaktionen der Pinguine im Vergleich zu niedrigeren Flughöhen hervorrufen. Weiterhin wurde untersucht, ob es Unterschiede bei der Guanofärbung einer Kolonie im Saisonverlauf oder zwischen den einzelnen Arten gibt, die mittels fernerkundlichen Methoden erkannt werden können. Die Ergebnisse der Versuche mit Munsell-Farbtafeln, Fotografien am Boden sowie UAV- und Satellitenaufnahmen aus zwei Saisons zeigen, dass sich die Probeflächen mit den Adéliepinguinen am Anfang der Saison von denen mit den Eselspinguinen unterscheiden. Der Unterschied äußert sich darin, dass zu Beginn der Brutsaison der relative Rot- und Grünanteil des Guanos sehr nahe beieinander liegt, das heißt die Guanofarbe erscheint grünlich. In der restlichen Saison hingegen dominiert bei allen Arten der Rotanteil. Aufgrund dieses Farbunterschiedes war es möglich, in einer hochaufgelösten Satellitenaufnahme die Adéliepinguinnestgruppen von den Eselspinguinnestgruppen zu unterscheiden. Neben der Guanofarbe wurde auch der Habitus sowie die Brutbiologie und -phänologie der Pinguine als mögliches Unterscheidungsmerkmal zwischen den Pygoscelis-Arten mit Hilfe der Fernerkundungsdaten untersucht. So ist es in UAV-Aufnahmen mit Bodenauflösungen von mindestens 1 cm unter optimalen Aufnahmebedingungen möglich, die Küken der drei Arten voneinander zu unterscheiden. Bei den Adulten hingegen konnte als einziges zuverlässiges Bestimmungsmerkmal der sanduhrförmige weiße Fleck auf dem Scheitel von Eselspinguinen ausgemacht werden, aber nur bei aufrecht gehaltenem Kopf. Auch anhand der unterschiedlichen Brutbiologie konnten Zügelpinguinnestgruppen mit noch brütenden Adulten von Eselspinguinnestgruppen mit bereits geschlüpften Küken mit Hilfe eines UAV-Orthophotomosaiks von Narebski Point zweifelsfrei voneinander unterschieden werden. Auch die intrasaisonal Variation in der Kolonieausdehnung und Nbesetzung wurde ausführlich anhand von GPS-basierten Teilkartierungen und der Brutphänologie auf Ardley Island untersucht. So zeigte sich, dass die Größe der Nestgruppenflächen über den Untersuchungszeitraum (Anfang Dezember bis Anfang Januar) weitestgehend konstant blieb, im Gegenzug die Anzahl der Nester und somit auch die Dichte der Nestgruppen aber stark abnahm. Auch wurde beobachtet, dass Nestgruppen mit 1-10 Nestern am deutlichsten innerhalb des Untersuchungszeitraumes vom Rückgang betroffen waren, was möglichweise an deren Kolonierandlage und dem damit einher gehenden größeren Prädationsdruck liegt. Die Untersuchungen von Cape Bird mit Landsat 8-Aufnahmen ergaben, dass dort keine intrasaisonalen Veränderungen in der Kolonieausdehnung festgestellt werden konnten. Lediglich die Wahrscheinlichkeit, dass die Kolonie mit Schnee bedeckt ist und somit nur teilweise oder nicht detektiert werden kann, steigt am Anfang und am Ende der Saison. Mit hochaufgelösten Satellitenaufnahmen konnte bei Ardley Island hingegen eine deutliche intrasaisonale Variation der Guanoflächen festgestellt werden. So nimmt die Guanofläche der Kolonie zum Saisonende hin stark zu, bis sie unter dem Einfluss von nachlassenden Guanoeintrag bei weiterhin vorhandener Erosion wieder abnimmt. Eine weitere Analyse zeigte, dass eine Korrelation (R?= 0,84) zwischen dem Aufnahmezeitpunkt der Satellitenaufnahme und der durchschnittlichen Nestdichte der Guanobedeckten Flächen besteht. Die Detektierbarkeit intersaisonaler Variationen in der Kolonieausdehnung und Nbesetzung wurde mit hoch- und mittelaufgelösten Satellitenaufnahmen anhand der Kolonien von Ardley Island und Cape Bird untersucht. Für Ardley Island konnte kein Zusammenhang (R? = 0,05) zwischen der Anzahl der Nester und der mit Hilfe der Bodenkartierung ermittelten Nestgruppenfläche festgestellt werden. Ähnliches zeigte sich für die Adéliepinguinkolonie Cape Bird Nord anhand hoch- und mittelaufgelösten Satellitenaufnahmen. Weiterhin konnten mit Landsat-Aufnahmen keine Veränderungen der Brutpaarzahlen anhand der Guanofläche detektiert werden, selbst dann nicht, wenn sich die Brutpaarzahlen mehr als verdreifachten. Dies ergaben Analysen an der Kolonie Cape Bird Nord im Zeitraum zwischen 1985 und 2016. Die Ursache dafür liegt wahrscheinlich in der Dichteänderung innerhalb der Nestgruppen. Quelle: Forschungsbericht
  • Veröffentlichung
    Monitoring penguin colonies in the Antarctic using remote sensing data
    (Umweltbundesamt, 2017) Mustafa, Osama; Esefeld, Jan; Grämer, Hannes; Thüringer Institut für Nachhaltigkeit und Klimaschutz (Jena); Universität (Jena). Arbeitsgruppe Polar- & Ornitho-Ökologie; Deutschland. Umweltbundesamt
    Vor dem Hintergrund der bereits punktuell beobachteten Bestandsveränderungen und Verschiebungen von Pinguinbrutplätzen im Zusammenhang mit dem globalen Klimawandel und der unterschiedlichen Verfügbarkeit von Nahrung erscheint ein möglichst flächendeckendes Monitoring der antarktischen Pinguine sinnvoll. Der vorliegende Bericht soll hierzu einen methodischen Beitrag leisten. Aufgrund der sehr großen Zahl von Kolonien und der in der Regel schwierigen Zugänglichkeit können Vor-Ort-Zählungen in Bezug auf die Größe der Brutpopulation stets nur Stichprobencharakter besitzen. Außerdem ist davon auszugehen, dass es eine nicht unbeträchtliche Anzahl bisher unbekannter Kolonien gibt. Ein weitestgehend umfassendes Monitoring erscheint daher nur auf der Basis von Fernerkundungsdaten möglich. Möglichst alle Pinguinkolonien der Antarktis detektieren zu können, werden Satellitendaten benötigt, die aufgrund der enormen Datenmengen sehr günstig zu akquirieren sind und zum anderen auch flächendeckend vorliegen. In dieser Untersuchung stellten sich die erst seit 2013 verfügbaren Landsat 8-Daten als die geeignetsten für diese Aufgabe heraus. Diese haben im Gegensatz zu dem Vorgänger Landsat 7, der seit Mai 2003 einen Fehler am sogenannten Scan-Line-Corrector aufweist, den großen Vorteil, dass die komplette Aufnahme ausgewertet werden kann, was eine höhere zeitliche Abdeckung der antarktischen Küstengebiete erlaubt. Wenn hingegen die Größe der Kolonien genau bestimmt und kleinräumige Veränderungen detektiert werden sollen, werden Satellitendaten benötigt, die eine sehr hohe räumliche und zeitliche Auflösung haben. In einem solchen Fall haben sich hochaufgelöste, multispektrale Satellitendaten mit Bodenauflösungen von unter 60 cm als am geeignetsten erwiesen. Erstmals wurden auch die hochaufgelösten VNIR-Daten des Worldview 3-Satelliten erfolgreich getestet. Zur Durchführung der Analysen wurden 12 hochaufgelöste und über 50 mittelaufgelöste multispektrale Satellitenaufnahmen der Testgebiete beschafft. Insbesondere gelang es trotz der häufigen Bewölkung in der Saison 2014/15 vier und in der Saison 2015/16 drei hochaufgelöste weitgehend wolkenfreie Aufnahmen von Ardley Island für intrasaisonale Untersuchungen zu akquirieren. Mit Hilfe dieser Daten wurde eine Reihe von Methoden auf ihre Eignung zur Detektion von hoch- und mittelaufgelösten Satellitenaufnahmen hin überprüft. Als schwierig stellte sich die Klassifikation des Guanos in den hochaufgelösten Aufnahmen heraus. Besonders der dunkel erscheinende Guano konnte kaum mit den getesteten Methoden detektiert werden. Im Gegensatz dazu ließ sich der hellere, orange-rötlichen Guano gut klassifizieren. Prinzipiell zeigte sich, dass die Klassifikationen bei der eher kontinental gelegen Cape Bird-Kolonie genauer waren als bei Adélie Land, was auf die relativ großen Flächen dunklen Guanos und der großen Variabilität der Geomorphologie und Vegetation auf Ardley Island zurückzuführen ist. Bei den untersuchten Methoden zeigte sich, dass die Maximum-Likelihood- und die ACE-Klassifikation die besten Ergebnisse für die Detektion von Guano in hochaufgelösten Aufnahmen lieferten. Beim Vergleich der Satellitenaufnahmen mit den Bodenkartierungen wurde auch festgestellt, dass es auf Ardley Island nicht möglich ist, alle Nestgruppen in Satellitenaufnahmen zu identifizieren, auch nicht manuell. Gute Ergebnisse wurden mit der ACE- und SAM-Klassifizierung bei den mittelaufgelösten Landsat 8-Aufnahmen der kontinentalen und maritimen Antarktis erreicht. Beiden Methoden scheinen für eine automatisierte Klassifizierung der gesamten Antarktis geeignet. Das eine automatische Detektion von Adéliepinguinkolonien der kontinentalen und auch der maritimen Antarktis mit Landsat 7-Aufnamen möglich ist, wurde bereits von Schwaller et al. (2013b) und Lynch & Schwaller (2014) eindrucksvoll bewiesen. Um die Aussagekraft bzw. die Genauigkeit der aus den Satellitenbildern gewonnenen Informationen beurteilen zu können, werden möglichst genaue Bodenkontrolldaten benötig. Vier verschiedene Methoden zur Schaffung solcher Referenzdaten wurden in diesem Projekt untersucht und miteinander verglichen. Die Panoramafotografie ist die schnellste Methode, liefert aber nur relativ ungenaue Ergebnisse, ähnlich wie die GPS-basierte Teilkartierung. Mit der GPS-basierten Vollkartierung erfolgt hingegen die genauste Bestimmung der Brutpaarzahlen aller untersuchten Methoden. Diese benötigt aber auch die meiste Zeit und hat den Nachteil, dass die brütenden Pinguine am stärksten gestört werden. Einen Mittelweg bietet die Kartierung mit sehr hochaufgelösten UAV-Orthophotomosaiken, mit der in kurzer Zeit große Gebiete untersucht werden können. Es wurde gezeigt, dass RGB-Orthophotomosaike am geeignetsten sind um die Brutpaare zu identifizieren, während sich NIR-Orthophotomosaike besonders für die Detektion des Guanos und der Vegetation eignen. Thermalinfrarot-Orthophotomosaike haben ein großes Potenzial bei der Identifizierung von Pinguinen, wenn diese sich auf oder neben einem Nest befinden. Die Methode ist aufgrund der geringen Auflösung der Thermalsensoren jedoch noch nicht praxistauglich. Erstmalig fand eine detaillierte Untersuchung des Störungspotenzials der UAV-gestützten Kartierung statt. Das Ergebnis zeigt, dass Überflughöhen von mehr als 50 m über Grund (entspricht der minimalen Flughöhe der UAV-Kartierungsflüge) nur geringe Verhaltensreaktionen der Pinguine im Vergleich zu niedrigeren Flughöhen hervorrufen. Weiterhin wurde untersucht, ob es Unterschiede bei der Guanofärbung einer Kolonie im Saisonverlauf oder zwischen den einzelnen Arten gibt, die mittels fernerkundlichen Methoden erkannt werden können. Die Ergebnisse der Versuche mit Munsell-Farbtafeln, Fotografien am Boden sowie UAV- und Satellitenaufnahmen aus zwei Saisons zeigen, dass sich die Probeflächen mit den Adéliepinguinen am Anfang der Saison von denen mit den Eselspinguinen unterscheiden. Der Unterschied äußert sich darin, dass zu Beginn der Brutsaison der relative Rot- und Grünanteil des Guanos sehr nahe beieinander liegt, das heißt die Guanofarbe erscheint grünlich. In der restlichen Saison hingegen dominiert bei allen Arten der Rotanteil. Aufgrund dieses Farbunterschiedes war es möglich, in einer hochaufgelösten Satellitenaufnahme die Adéliepinguinnestgruppen von den Eselspinguinnestgruppen zu unterscheiden. Neben der Guanofarbe wurde auch der Habitus sowie die Brutbiologie und -phänologie der Pinguine als mögliches Unterscheidungsmerkmal zwischen den Pygoscelis-Arten mit Hilfe der Fernerkundungsdaten untersucht. So ist es in UAV-Aufnahmen mit Bodenauflösungen von mindestens 1 cm unter optimalen Aufnahmebedingungen möglich, die Küken der drei Arten voneinander zu unterscheiden. Bei den Adulten hingegen konnte als einziges zuverlässiges Bestimmungsmerkmal der sanduhrförmige weiße Fleck auf dem Scheitel von Eselspinguinen ausgemacht werden, aber nur bei aufrecht gehaltenem Kopf. Auch anhand der unterschiedlichen Brutbiologie konnten Zügelpinguinnestgruppen mit noch brütenden Adulten von Eselspinguinnestgruppen mit bereits geschlüpften Küken mit Hilfe eines UAV-Orthophotomosaiks von Narebski Point zweifelsfrei voneinander unterschieden werden. Auch die intrasaisonal Variation in der Kolonieausdehnung und Ńbesetzung wurde ausführlich anhand von GPS-basierten Teilkartierungen und der Brutphänologie auf Ardley Island untersucht. So zeigte sich, dass die Größe der Nestgruppenflächen über den Untersuchungszeitraum (Anfang Dezember bis Anfang Januar) weitestgehend konstant blieb, im Gegenzug die Anzahl der Nester und somit auch die Dichte der Nestgruppen aber stark abnahm. Auch wurde beobachtet, dass Nestgruppen mit 1-10 Nestern am deutlichsten innerhalb des Untersuchungszeitraumes vom Rückgang betroffen waren, was möglichweise an deren Kolonierandlage und dem damit einher gehenden größeren Prädationsdruck liegt. Die Untersuchungen von Cape Bird mit Landsat 8-Aufnahmen ergaben, dass dort keine intrasaisonalen Veränderungen in der Kolonieausdehnung festgestellt werden konnten. Lediglich die Wahrscheinlichkeit, dass die Kolonie mit Schnee bedeckt ist und somit nur teilweise oder nicht detektiert werden kann, steigt am Anfang und am Ende der Saison. Mit hochaufgelösten Satellitenaufnahmen konnte bei Ardley Island hingegen eine deutliche intrasaisonale Variation der Guanoflächen festgestellt werden. So nimmt die Guanofläche der Kolonie zum Saisonende hin stark zu, bis sie unter dem Einfluss von nachlassenden Guanoeintrag bei weiterhin vorhandener Erosion wieder abnimmt. Eine weitere Analyse zeigte, dass eine Korrelation (Ṛ= 0,84) zwischen dem Aufnahmezeitpunkt der Satellitenaufnahme und der durchschnittlichen Nestdichte der Guanobedeckten Flächen besteht. Die Detektierbarkeit intersaisonaler Variationen in der Kolonieausdehnung und Ńbesetzung wurde mit hoch- und mittelaufgelösten Satellitenaufnahmen anhand der Kolonien von Ardley Island und Cape Bird untersucht. Für Ardley Island konnte kein Zusammenhang (Ṛ = 0,05) zwischen der Anzahl der Nester und der mit Hilfe der Bodenkartierung ermittelten Nestgruppenfläche festgestellt werden. Ähnliches zeigte sich für die Adéliepinguinkolonie Cape Bird Nord anhand hoch- und mittelaufgelösten Satellitenaufnahmen. Weiterhin konnten mit Landsat-Aufnahmen keine Veränderungen der Brutpaarzahlen anhand der Guanofläche detektiert werden, selbst dann nicht, wenn sich die Brutpaarzahlen mehr als verdreifachten. Dies ergaben Analysen an der Kolonie Cape Bird Nord im Zeitraum zwischen 1985 und 2016. Die Ursache dafür liegt wahrscheinlich in der Dichteänderung innerhalb der Nestgruppen. Quelle: Forschungsbericht
  • Vorschaubild
    Veröffentlichung
    Monitoring von Pinguinkolonien in der Antarktis mit Hilfe der Fernerkundung
    (Umweltbundesamt, 2020) Mustafa, Osama; Firla, Maximilian; Grämer, Hannes; Thüringer Institut für Nachhaltigkeit und Klimaschutz (Jena); Bauhaus-Universität Weimar, Materialforschungs- und Prüfanstalt; Deutschland. Umweltbundesamt; Hertel, Fritz
    Pinguine sind ein zentrales Element im Ökosystem der Antarktis und des Südozeans. Sowohl als Prädator als auch als Nahrungsquelle für andere Tiere werden sie direkt von Umweltveränderungen beeinflusst. Die in einer Vielzahl von Kolonien beobachteten Bestandsveränderungen werden gegenwärtig dem Klimawandel und der marinen Fischerei zugeschrieben. Gleichzeitig sind Pinguine die einzige Organismengruppe der Antarktis, die mit Hilfe von Satelliten sicher beobachtbar ist. In dieser Studie wurden, aufbauend auf einer vorangegangenen Studie (Mustafa et al. 2017), Methoden entwickelt und überprüft, die ein künftiges antarktisweites Monitoring von felsbrütenden Pinguinen erlauben. Es wird untersucht, welche neuen Technologien sich für die Detektion antarktischer Pinguine eignen. Dies betrifft insbesondere neue Satellitenplattformen (z.B. Sentinel-2, SkySat), aber auch Drohnen (Multikopter, Starrflügler). Neue Verfahren der Klassifizierung von Fernerkundungsdaten werden entwickelt und getestet (GEOBIA, MPRM, Deep Learning), um eine höhere Ergebnisqualität und einen höheren Automatisierungs- und Operationalisierungsgrad zu erreichen. Ein Verfahren zur Bestimmung von Pinguinbrutpaarzahlen aus Drohnenaufnahmen konnte entwickelt werden, während die sichere Unterscheidung der Arten der Gattung Pygoscelis in Satellitenbildern noch immer nicht möglich ist. Für die drohnenbasierte Detektierung von fliegenden Seevögeln und Robben in der Antarktis konnte dagegen eine Planungs- und Bestimmungshilfe erstellt werden. Temporale Variationen in der Ausdehnung und Besetzung von Pinguinkolonien wurden insbesondere auf ihre Verknüpfung mit der Brutphänologie hin untersucht, mit dem Ziel, Klassifikationsergebnisse verschiedener Aufnahmezeitpunkte vergleichbar zu machen. Als potentiell geeignete Referenzgebiete für ein großräumiges Monitoring wurden fünf Gebiete ausgewählt (Ardley Island, Narebski Point, Drake Passage, Deception Island, South Shetland Islands). Die gewonnenen Erkenntnisse sind Teil eines umfangreichen Inventars an Methoden, das künftigen Monitoringprogrammen zur Verfügung steht. Dies schließt auch Erkenntnisse zu den Umweltauswirkungen von Drohnenflügen und die Anwendung stationärer Kameras ein. Für die organisatorische Einbindung eines solchen Programmes wird auf CCAMLR CEMP verwiesen. Neben den entwickelten Methoden wurde in dieser Studie eine Reihe von fernerkundlichen oder terrestrischen Daten erarbeitet, die entweder an vorhandene Datenreihen anschließen, oder Ausgangspunkt für langfristige Beobachtungen sein können. Mit MAPPPD steht inzwischen auch eine geeignete Datenbankstruktur für Speicherung, Abruf und Weitergabe der Daten zur Verfügung. Die inhaltlichen Voraussetzungen für ein hochqualitatives und effizientes antarktisweites Monitoring von Pinguinen sind somit weitgehend vorhanden; es bedarf nur noch einer organisatorischen Umsetzung. Quelle: Forschungsbericht
  • Vorschaubild
    Veröffentlichung
    Monitoring der klimabedingten Veränderungen terrestrischer und mariner Ökosysteme in der Maxwell Bay (Antarktis)
    (Umweltbundesamt, 2022) Braun, Christina; Grämer, Hannes; Peter, Hans-Ulrich; Friedrich-Schiller-Universität Jena. Institut für Ökologie und Evolution; Deutschland. Umweltbundesamt; Hertel, Fritz
    Die Antarktis sowie das umgebende Südpolarmeer unterliegen einem zunehmenden Druck durch kumulative Auswirkungen von Klimaveränderungen, Verschmutzung, Fischerei, Tourismus sowie einer Vielzahl weiterer menschlicher Aktivitäten. Diese Veränderungen bergen ein hohes Risiko sowohl für die lokalen polaren Ökosysteme als auch für die Regulation des globalen Klimas sowie durch einen globalen Anstieg des Meeresspiegels. Somit dienen langfristige Monitoringprogramme zur Beurteilung des Zustands von Ökosystemen sowie zur Erstellung von Prognosen für zukünftige Entwicklungen. Die Fildes-Region im Südwesten King George Islands (South Shetland Islands, Maritime Antarktis), bestehend aus der Fildes Peninsula, Ardley Island sowie mehreren vorgelagerten Inseln, gehört zu den größten eisfreien Arealen der Maritimen Antarktis. Im Rahmen der Fortsetzung eines in den 1980er Jahren begonnenen Langzeitmonitorings wurde während der Sommermonate (Dezember, Januar, Februar) der Saisons 2018/19 und 2019/20 die Erfassung der lokalen Brutvogel- und Robbenbestände durchgeführt und durch einzelne Zähldaten der Saison 2020/21 ergänzt. Die vorliegende Studie präsentiert die gewonnenen Ergebnisse, einschließlich der Bestandsentwicklung der heimischen Brutvögel. Hierbei zeigten einige Arten im Langzeitvergleich stabile Bestände (Braune Skuas, Südpolarskuas) oder eine deutliche Zunahme (Eselspinguin, Südlicher Riesensturmvogel). Andere Arten verzeichneten dagegen deutliche Rückgänge der Brutpaarzahlen (Adéliepinguin, Zügelpinguin, Antarktisseeschwalbe, Dominikanermöwe) bis hin zu einem fast völligen Verschwinden aus dem Brutgebiet (Kapsturmvogel). Daneben wurde die Zahl der Robben an ihren Ruheplätzen erfasst sowie die Verbreitung aller Wurfplätze in der Fildes-Region dargestellt. Weiterhin wurden Daten zum Brutvogelbestand in ausgewählten Bereichen der Maxwell Bay ergänzt. Ferner wurde die schnelle Ausbreitung der Antarktischen Schmiele mit Hilfe einer vervollständigten Wiederholungskartierung dokumentiert. Die Dokumentation von Gletscherrückzugsgebieten ausgewählter Bereiche der Maxwell Bay wurde anhand von Satellitenbildern aktualisiert und in Bezug zur regionalen klimatischen Entwicklung betrachtet. Weiterhin wird auf die Verbreitung und Menge von angespültem Meeresmüll in der Fildes-Region sowie auf Einflüsse von anthropogenem Material auf Seevögel eingegangen. Zusätzlich werden die aktuellen Kenntnisse über alle eingeschleppten, nicht-heimischen Arten im Untersuchungsgebiet sowie der weitere Forschungsbedarf dargestellt. Quelle: Forschungsbericht