Vorschaubild nicht verfügbar
Publikationstyp
Wissenschaftlicher Artikel
Erscheinungsjahr
2019
Hexamoll® DINCH and DPHP metabolites in urine of children and adolescents in Germany. Human biomonitoring results of the German Environmental Survey GerES V, 2014-2017
Hexamoll® DINCH and DPHP metabolites in urine of children and adolescents in Germany. Human biomonitoring results of the German Environmental Survey GerES V, 2014-2017
Herausgeber
Quelle
International Journal of Hygiene and Environmental Health
(2019)
(2019)
Schlagwörter
DINCH, Human-Biomonitoring
Zitation
CONRAD, André, Marike KOLOSSA-GEHRING, Enrico RUCIC, Maria Irene Hilde SCHMIED-TOBIES, Christine SCHULZ und Gerda SCHWEDLER, 2019. Hexamoll® DINCH and DPHP metabolites in urine of children and adolescents in Germany. Human biomonitoring results of the German Environmental Survey GerES V, 2014-2017. International Journal of Hygiene and Environmental Health [online]. 2019. Bd. (2019). DOI 10.60810/openumwelt-1328. Verfügbar unter: https://openumwelt.de/handle/123456789/4807
Zusammenfassung englisch
The production and use of the plasticisers Hexamoll® DINCH (di-(iso-nonyl)-cyclohexane-1,2-dicarboxylate) and DPHP (di-(2-propylheptyl) phthalate) have increased after both chemicals were introduced into the market in the early 2000s as substitutes for restricted high molecular weight phthalates. During the population representative German Environmental Survey (GerES) of Children and Adolescents (GerES V, 2014-2017), we collected urine samples and measured the concentrations of DINCH and DPHP metabolites in 2228 and in a subsample of 516 participants, respectively. We detected DINCH and DPHP metabolites in 100% and 62% of the 3-17 years old children and adolescents, respectively. Geometric means of DINCH metabolites were 2.27 myg/L for OH-MINCH, 0.93 myg/L for oxo-MINCH, 1.14 myg/L for cx-MINCH and 3.47 myg/L for DINCH (Sigma of OH-MINCH + cx-MINCH). Geometric means of DPHP metabolites were 0.30 myg/L for OH-MPHP, 0.32 myg/L for oxo-MPHP and 0.64 myg/L for DPHP (Sigma of OH-MPHP + oxo-MPHP). The 3-5 years old children had almost 3-fold higher DINCH biomarkers levels than adolescents (14-17 years). Higher concentrations of DPHP biomarkers among young children only became apparent after creatinine adjustment. Urinary levels of DINCH but not of DPHP biomarkers were associated with the levels of the respective plasticisers in house dust. When compared to HBM health-based guidance values, we observed no exceedance of the HBM-I value of 1 mg/L for DPHP (Sigma of OH-MPHP + oxo-MPHP). However, 0.04% of the children exceeded the health based guidance value HBM-I of 3 mg/L for DINCH (Sigma of OH-MINCH + cx-MINCH). This finding shows that even a less toxic replacement of restricted chemicals can reach exposures in some individuals, at which, according to current knowledge, health impacts cannot be excluded with sufficient certainty. In conclusion, we provide representative data on DINCH and DPHP exposure of children and adolescents in Germany. Further surveillance is warranted to assess the substitution process of plasticisers, and to advise exposure reduction measures, especially for highly exposed children and adolescents. Providing the results to the European HBM Initiative HBM4EU will support risk assessment and risk management not only in Germany but also in Europe. © 2019 The Authors. Published by Elsevier GmbH