Person: Plaß, Dietrich
Lade...
E-Mail-Adresse
Geburtsdatum
Forschungsvorhaben
Organisationseinheiten
Berufsbeschreibung
Nachname
Plaß
Vorname
Dietrich
Name
33 Ergebnisse
Suchergebnisse
Gerade angezeigt 1 - 10 von 33
Veröffentlichung Proceedings of the International Workshop "From Global Burden of Disease Studies to National Burden of Disease Surveillance"(2016) Scheidt-Nave, C.; Ziese, T.; Fuchs, J.; Achiko, T.; Leach-Kemon, K.; Speyer, P.; Heisel, W.E.; Gakidou, E.; Vos, T.; Forouzanfar, M.H.; Schmidt, J.C.; Stein, C.E.; Lippe, E. von der; Kallweit, Dagmar; Barnes, B.; Busch, M.A.; Buttmann-Schweiger, N.; Heidemann, C.; Kraywinkel, K.; Plaß, Dietrich; Nowossadeck, E.; Buchholz, U.; Heiden, M. an der; Eckmanns, T.; Haller, S.; Tobollik, M.; Wintermeyer, D.Veröffentlichung Burden of Disease Due to Traffic Noise in Germany(2019) Hintzsche, Matthias; Myck, Thomas; Plaß, Dietrich; Tobollik, Myriam; Wothge, JördisTraffic noise is nearly ubiquitous and thus can affect the health of many people. Using the German noise mapping data according to the Directive 2002/49/EC of 2017 and exposure-response functions for ischemic heart disease, noise annoyance and sleep disturbance assessed by the World Health Organizationâ€Ìs Environmental Noise Guidelines for the European Region the burden of disease due to traffic noise is quantified. The burden of disease is expressed in disability-adjusted life years (DALYs) and its components. The highest burden was found for road traffic noise, with 75,896 DALYs when only considering moderate evidence. When including all available evidence, 176,888 DALYs can be attributable to road traffic noise. The burden due to aircraft and railway noise is lower because fewer people are exposed. Comparing the burden by health outcomes, the biggest share is due to ischemic heart disease (90%) in regard to aircraft noise, however, the lowest evidence was expressed for the association between traffic noise and ischemic heart disease. Therefore, the results should be interpreted with caution. Using alternative input parameters (e.g., exposure data) can lead to a much higher burden. Nevertheless, environmental noise is an important risk factor which leads to considerable loss of healthy life years. Quelle: https://www.mdpi.comVeröffentlichung Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015(2016) Wang, Haidong; Naghavi, Mohsen; Allen, Christine; Barber, Ryan M.; Bhutta, Zulfiqar A.; Carter, Austin; Casey, Daniel C.; Charlson, Fiona J.; Chen, Alan Zian; Coates, Matthew M.; Coggeshall, Megan; Dandona, Lalit; Dicker, Daniel J.; Erskine, Holly E.; Ferrari, Alize J.; Fitzmaurice, Christina; Foreman, Kyle J.; Forouzanfar, Mohammad H.; Fraser, Maya S.; Fullman, Nancy; Gething, Peter W.; Goldberg, Ellen M.; Graetz, Nicholas; Haagsma, Juanita A.; Hay, Simon I.; Huynh, Chantal; Johnson, Catherine O.; Kassebaum, Nicholas J.; Kinfu, Yohannes; Kulikoff, Xie Rachel; Kutz, Michael; Kyu, Hmwe H.; Larson, Heidi J.; Leung, Janni; Liang, Xiaofeng; Lim, Stephen S.; Lind, Margaret; Lozano, Rafael; Marquez, Neal; Mensah, George A.; Mikesell, Joe; Mokdad, Ali H.; Mooney, Meghan D.; Nguyen, Grant; Nsoesie, Elaine; Pigott, David M.; Pinho, Christine; Roth, Gregory A.; Salomon, Joshua A.; Sandar, Logan; Silpakit, Naris; Sligar, Amber; Sorensen, Reed J. D.; Stanaway, Jeffrey; Steiner, Caitlyn; Teeple, Stephanie; Thomas, Bernadette A.; Troeger, Christopher; VanderZanden, Amelia; Vollset, Stein Emil; Plaß, Dietrich; Wanga, Valentine; Whiteford, Harvey A.; Wolock, Timothy; Zoeckler, Leo; Abate, Kalkidan Hassen; Abbafati, Cristiana; Abbas, Kaja M.; Abd-Allah, Foad; Abera, Semaw Ferede; Abreu, Daisy M. X.; Abu-Raddad, Laith J.; Abyu, Gebre Yitayih; Achoki, Tom; Adelekan, Ademola Lukman; Ademi, Zanfina; Adou, Arsène Kouablan; Adsuar, José C.; Afanvi, Kossivi AgbelenkoImproving survival and extending the longevity of life for all populations requires timely, robust evidence on local mortality levels and trends. The Global Burden of Disease 2015 Study (GBD 2015) provides a comprehensive assessment of all-cause and cause-specific mortality for 249 causes in 195 countries and territories from 1980 to 2015. These results informed an in-depth investigation of observed and expected mortality patterns based on sociodemographic measures. Quelle: www.sciencedirect.comVeröffentlichung ICD-Codierung von Todesursachen(2019) Wengler, Annelene; Gruhl, Heike; Rommel, Alexander; Plaß, DietrichIm Projekt BURDEN 2020 - Die Krankheitslast in Deutschland und seinen Regionen - werden anhand der amtlichen Todesursachenstatistik die durch vorzeitige Sterblichkeit verlorenen Lebensjahre (Years of Life Lost, YLL) berechnet. Dafür müssen "ungültige ICD-Codes" identifiziert und umverteilt werden. "Ungültig" bedeutet, dass ein ICD-Code die Todesursache nur ungenügend wiedergibt, sodass er für die Berechnung der Krankheitslast nicht informativ ist. In diesem Artikel werden die ersten Schritte zur Berechnung der todesursachenspezifischen YLL dargestellt. Klassifizierungen ungültiger Codes werden verglichen. Es wird untersucht, wie viele Todesfälle mit ungültigen Codes in der Todesursachenstatistik in Deutschland absolut und relativ vorliegen und wie sich diese nach Alter, Geschlecht und Regionen verteilen. Auf Grundlage der Klassifikation der Weltgesundheitsorganisation (WHO) können für das Jahr 2015 in Deutschland bei den insgesamt 925.200 Todesfällen 15,6% ungültige Codes identifiziert werden. Nach der Klassifikation der Global Burden of Disease-Studie (GBD-Studie) des Institute for Health Metrics and Evaluation (IHME) liegt der Anteil bei 26,6%. Die ICD-bezogenen Verteilungsmuster unterscheiden sich bei WHO- und IHME-Klassifikation kaum. Große Unterschiede gibt es zwischen den Bundesländern: Der Anteil ungültiger Codes beträgt 16-35% (nach IHME-Klassifikation). Die Todesursachenstatistik in Deutschland enthält einen erheblichen Anteil an Todesfällen mit ungültigen Codes. Die Unterschiede zwischen den Bundesländern können nur teilweise mit der unterschiedlichen Verarbeitung der Daten erklärt werden. Zukünftig ist aufgrund der weiteren Verbreitung und Verbesserung der elektronischen Datenerfassung eine höhere Qualität der Todesursachenstatistik zu erwarten. Quelle: https://link.springer.com/Veröffentlichung Umweltbedingte Krankheitslasten in Deutschland(2018) Steckling, Nadine; Myck, Thomas; Mertes, Hanna; Plaß, Dietrich; Ziese, Thomas; Tobollik, Myriam; Wintermeyer, Dirk; Hornberg, ClaudiaVeröffentlichung Krankheitslast durch Feinstaub(2017) Plaß, Dietrich; Tobollik, Myriam; Wintermeyer, DirkVeröffentlichung Impact of infectious diseases on population health using incidence-based disability-adjusted life years (DALYs): results from the Burden of Communicable Diseases in Europe study, European Union and European Economic Area countries, 2009 to 2013(2018) Cassini, Alessandro; Colzani, Edoardo; Pini, Alessandro; Plaß, DietrichVeröffentlichung In reply(2015) Plaß, DietrichVeröffentlichung Global, regional, and national age-sex-specific mortality and life expectancy, 1950 - 2017(2018) Dicker, Daniel J.; Nguyen, Grant; Abate, Degu; Plaß, DietrichBackground: Assessments of age-specific mortality and life expectancy have been done by the UN Population Division, Department of Economics and Social Affairs (UNPOP), the United States Census Bureau, WHO, and as part of previous iterations of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD). Previous iterations of the GBD used population estimates from UNPOP, which were not derived in a way that was internally consistent with the estimates of the numbers of deaths in the GBD. The present iteration of the GBD, GBD 2017, improves on previous assessments and provides timely estimates of the mortality experience of populations globally. Methods: The GBD uses all available data to produce estimates of mortality rates between 1950 and 2017 for 23 age groups, both sexes, and 918 locations, including 195 countries and territories and subnational locations for 16 countries. Data used include vital registration systems, sample registration systems, household surveys (complete birth histories, summary birth histories, sibling histories), censuses (summary birth histories, household deaths), and Demographic Surveillance Sites. In total, this analysis used 8259 data sources. Estimates of the probability of death between birth and the age of 5 years and between ages 15 and 60 years are generated and then input into a model life table system to produce complete life tables for all locations and years. Fatal discontinuities and mortality due to HIV/AIDS are analysed separately and then incorporated into the estimation. We analyse the relationship between age-specific mortality and development status using the Socio-demographic Index, a composite measure based on fertility under the age of 25 years, education, and income. There are four main methodological improvements in GBD 2017 compared with GBD 2016: 622 additional data sources have been incorporated; new estimates of population, generated by the GBD study, are used; statistical methods used in different components of the analysis have been further standardised and improved; and the analysis has been extended backwards in time by two decades to start in 1950. Findings: Globally, 187% (95% uncertainty interval 184â€Ì190) of deaths were registered in 1950 and that proportion has been steadily increasing since, with 588% (582â€Ì593) of all deaths being registered in 2015. At the global level, between 1950 and 2017, life expectancy increased from 481 years (465â€Ì496) to 705 years (701â€Ì708) for men and from 529 years (517â€Ì540) to 756 years (753â€Ì759) for women. Despite this overall progress, there remains substantial variation in life expectancy at birth in 2017, which ranges from 491 years (465â€Ì517) for men in the Central African Republic to 876 years (869â€Ì881) among women in Singapore. The greatest progress across age groups was for children younger than 5 years; under-5 mortality dropped from 2160 deaths (1963â€Ì2381) per 1000 livebirths in 1950 to 389 deaths (356â€Ì4283) per 1000 livebirths in 2017, with huge reductions across countries. Nevertheless, there were still 54 million (52â€Ì56) deaths among children younger than 5 years in the world in 2017. Progress has been less pronounced and more variable for adults, especially for adult males, who had stagnant or increasing mortality rates in several countries. The gap between male and female life expectancy between 1950 and 2017, while relatively stable at the global level, shows distinctive patterns across super-regions and has consistently been the largest in central Europe, eastern Europe, and central Asia, and smallest in south Asia. Performance was also variable across countries and time in observed mortality rates compared with those expected on the basis of development. Interpretation: This analysis of age-sex-specific mortality shows that there are remarkably complex patterns in population mortality across countries. The findings of this study highlight global successes, such as the large decline in under-5 mortality, which reflects significant local, national, and global commitment and investment over several decades. However, they also bring attention to mortality patterns that are a cause for concern, particularly among adult men and, to a lesser extent, women, whose mortality rates have stagnated in many countries over the time period of this study, and in some cases are increasing. Funding: Bill & Melinda Gates Foundation. © 2018 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licenseVeröffentlichung Übersicht zu Indikatoren im Kontext Umwelt und Gesundheit(2018) Kabel, Claudia; Mekel, Odile; Hornberg, Claudia; Plaß, Dietrich; Tobollik, Myriam