Listen
Filter
Einstellungen
Suchergebnisse
Veröffentlichung Modelling and mapping of atmospheric nitrogen and sulphur deposition and critical loads for ecosystem specific assessment of threats to biodiversity in Germany - PINETI (Pollutant INput and EcosysTem Impact)(Umweltbundesamt, 2014) Wichink Kruit, Roy; Schaap, Martijn; Segers, Arjo; Nederlandse Centrale Organisatie voor Toegepast-Natuurwetenschappelijk Onderzoek; Deutschland. Umweltbundesamt; Frommer, Jakob; Geupel, MarkusDie Biodiversität in Europa ist durch den Eintrag von Schwefel- und Stickstoffverbindungen in die Ökosysteme gefährdet. Innerhalb des PINETI Projektes werden daher die atmosphärischen Einträge dieser Schad- und Nährstoffe für Deutschland für die Jahre 2008 und 2009 ermittelt. Die trockenen, nassen und feuchten Einträge von NHx, NOy, SOx und die Einträge der basischen Kationen Ca2+, Mg2+, K+ und Na+ werden berechnet und zur Gesamtdeposition aufsummiert. Anhand der Ergebnisse und den Critical Load werden die Überschreitungen der Critical Load für empfindliche Ökosysteme berechnet.Im Folgenden wird eine Zusammenfassung der verwendeten Methoden und der Projektergebnisse präsentiert. Nach einer kurzen Einleitung werden zunächst die Eingangsdaten zur Ermittlung der atmosphärischen Einträge erläutert. Anschließend werden die Methoden zur Bestimmung der trockenen, nassen und feuchten Deposition jeweils kurz beschrieben. Die erstellten Karten zur Gesamtdeposition werden präsentiert und die Ergebnisse mit den Resultaten des Vorgängerprojektes MAPESI und Ergebnissen des EMEP Modells verglichen. Im Anschluss werden die, innerhalb des Projektes durchgeführten Modellweiterentwicklungen und Modellevaluationen zusammenfassend beschrieben und weitere mögliche Modellentwicklungen benannt und empfohlen. Abschließend wird die Bewertung des Eintrages in Bezug auf Risiken für terrestrische Ökosysteme zusammenfassend dargestellt. Das Prinzip der Critical Load wird kurz erläutert und die zeitlichen Trends der Überschreitungen der Critical Load für Versauerung und für Eutrophierung werden präsentiert.
Quelle: ForschungsberichtVeröffentlichung PINETI-3: Modellierung atmosphärischer Stoffeinträge von 2000 bis 2015 zur Bewertung der ökosystem-spezifischen Gefährdung von Biodiversität durch Luftschadstoffe in Deutschland(2018) Schaap, Martijn; Hendriks, Carlijn; Kranenburg, Richard; Nederlandse Centrale Organisatie voor Toegepast-Naturwetenschappelijk Onderzoek; Öko-Data Gesellschaft für Ökosystemanalyse und Umweltdatenmanagement (Strausberg); Deutschland. Umweltbundesamt; Geupel, MarkusDie Biodiversität ist durch die Ablagerung von Schad- und Nährstoffen aus der Luft in Ökosysteme gefährdet. Innerhalb des vorliegenden Projektes wurden daher die atmosphärischen Einträge dieser Schad- und Nährstoffe für Deutschland für eine Zeitreihe von 2000 bis 2015 ermittelt. Die Stickstoffdeposition ist in diesem Zeitraum um etwa 20 % gesunken. Die Schwefeldeposition konnte sogar halbiert werden. Trotzdem sind die Belastungen für viele der deutschen Ökosysteme immer noch zu hoch. Bei der Versauerung sind noch rund 30 %, bei der Eutrophierung sogar noch 70 % der natürlichen und halb-natürlichen Landökosysteme von zu hohen Einträgen im Vergleich zu ihrer Empfindlichkeit betroffen.Veröffentlichung Reaktive Stickstoffflüsse in Deutschland 2010-2014 (DESTINO Bericht 2)(Umweltbundesamt, 2020) Bach, Martin; Häußermann, Uwe; Klement, Laura; Institut für Landschaftsökologie und Ressourcenmanagement (Gießen); Karlsruher Institut für Technologie; Infras AG (Zürich); Deutschland. Umweltbundesamt; Geupel, MarkusDer Eintrag von Stickstoff in die Umwelt verursacht vielfältige Probleme. Für die Konzeption von Minderungsmaßnahmen ist es eine wesentliche Voraussetzung, die Quellen, Senken und Flüsse reaktiver Stickstoffverbindungen (Nr) zu quantifizieren. Im Rahmen des überarbeiteten Göteborg-Protokolls zur Convention on Long-Range Transboundary Air Pollution (CLTRAP) wurde 2012 vereinbart, die nationalen Stickstoff-Flüsse zu erfassen. Das "Guidance document on national nitrogen budgets" der Economic Commission for Europe bildet dafür den Ausgangspunkt (ECE 2013). In einer nationalen N-Bilanzierung (NNB) werden für acht Pools die ein- und ausgehenden Nr-Flüsse berechnet: Atmosphäre, Energiewirtschaft und Verkehr, Industrielle Produktion, Ernährung und Konsum, Landwirtschaft, Wald und semi-natürliche Flächen, Abfallwirtschaft und Abwasserentsorgung, Gewässer sowie die grenzüberschreitenden N-Flüsse (Importe und Exporte). Die N-Flüsse werden aus statistischen Be-richten, Veröffentlichungen etc. direkt entnommen oder als Produkt aus der transportierten bzw. um-gesetzten Stoffmenge und deren mittlerem N-Gehalt berechnet. Insgesamt werden für Deutschland rund 150 N-Flüsse beschrieben, die Unsicherheit der Ergebnisse wird in vier Stufen von "sehr gering" bis "hoch" eingestuft. In Deutschland werden jährlich 6275 kt Nr a-1 in Umlauf gebracht (Mittelwert 2010 bis 2014), davon 43 % über die Ammoniak-Synthese. Die inländische Förderung und der Import von N-haltigen fossilen Energieträgern (Braunkohle, Steinkohle, Rohöl) tragen 2335 kt N a-1 dazu bei. Mit der Stickstoff-Fixierung als einzigem natürlichen Prozess werden 308 kt N a-1 in organisch gebundenen Stickstoff überführt. Als bedeutendste Senke von Nr werden mit der Verbrennung von fossilen und regenerativen Energieträgern sowie mit der Verarbeitung von Rohöl zu Mineralölprodukten 2711 kt N a-1 wieder in N2 überführt. In Gewässern, Böden und Kläranlagen werden 1107 kt N a-1 denitrifiziert. Über die Atmosphäre und den Gewässerabfluss exportiert Deutschland netto 745 kt N a-1 in seine Nachbarländer und in die Küstenmeere. Die Änderung des N-Bodenvorrats wurde bislang nur für Waldböden ermittelt, für die ein Abbau von 293 kt N a-1 berechnet wird. Der NNB zufolge werden in Deutschland jährlich 1627 kt Nr a-1 freigesetzt. Die NNB ist allerdings durch größere Unsicherheiten gekennzeichnet, was bei der Interpretation der Ergebnisse berücksichtigt werden muss. Quelle: ForschungsberichtVeröffentlichung Reactive nitrogen flows in Germany 2010-2014 (DESTINO Report 2)(Umweltbundesamt, 2020) Bach, Martin; Häußermann, Uwe; Klement, Laura; Institut für Landschaftsökologie und Ressourcenmanagement (Gießen); Karlsruher Institut für Technologie; Infras AG (Zürich); Deutschland. Umweltbundesamt; Geupel, MarkusDer Eintrag von Stickstoff in die Umwelt verursacht vielfältige Probleme. Für die Konzeption von Minderungsmaßnahmen ist es eine wesentliche Voraussetzung, die Quellen, Senken und Flüsse reaktiver Stickstoffverbindungen (Nr) zu quantifizieren. Im Rahmen des überarbeiteten Göteborg-Protokolls zur Convention on Long-Range Transboundary Air Pollution (CLTRAP) wurde 2012 vereinbart, die nationalen Stickstoff-Flüsse zu erfassen. Das "Guidance document on national nitrogen budgets" der Economic Commission for Europe bildet dafür den Ausgangspunkt (ECE 2013). In einer nationalen N-Bilanzierung (NNB) werden für acht Pools die ein- und ausgehenden Nr-Flüsse berechnet: Atmosphäre, Energiewirtschaft und Verkehr, Industrielle Produktion, Ernährung und Konsum, Landwirtschaft, Wald und semi-natürliche Flächen, Abfallwirtschaft und Abwasserentsorgung, Gewässer sowie die grenzüberschreitenden N-Flüsse (Importe und Exporte). Die N-Flüsse werden aus statistischen Be-richten, Veröffentlichungen etc. direkt entnommen oder als Produkt aus der transportierten bzw. um-gesetzten Stoffmenge und deren mittlerem N-Gehalt berechnet. Insgesamt werden für Deutschland rund 150 N-Flüsse beschrieben, die Unsicherheit der Ergebnisse wird in vier Stufen von "sehr gering" bis "hoch" eingestuft. In Deutschland werden jährlich 6275 kt Nr a-1 in Umlauf gebracht (Mittelwert 2010 bis 2014), davon 43 % über die Ammoniak-Synthese. Die inländische Förderung und der Import von N-haltigen fossilen Energieträgern (Braunkohle, Steinkohle, Rohöl) tragen 2335 kt N a-1 dazu bei. Mit der Stickstoff-Fixierung als einzigem natürlichen Prozess werden 308 kt N a-1 in organisch gebundenen Stickstoff überführt. Als bedeutendste Senke von Nr werden mit der Verbrennung von fossilen und regenerativen Energieträgern sowie mit der Verarbeitung von Rohöl zu Mineralölprodukten 2711 kt N a-1 wieder in N2 überführt. In Gewässern, Böden und Kläranlagen werden 1107 kt N a-1 denitrifiziert. Über die Atmosphäre und den Gewässerabfluss exportiert Deutschland netto 745 kt N a-1 in seine Nachbarländer und in die Küstenmeere. Die Änderung des N-Bodenvorrats wurde bislang nur für Waldböden ermittelt, für die ein Abbau von 293 kt N a-1 berechnet wird. Der NNB zufolge werden in Deutschland jährlich 1627 kt Nr a-1 freigesetzt. Die NNB ist allerdings durch größere Unsicherheiten gekennzeichnet, was bei der Interpretation der Ergebnisse berücksichtigt werden muss. Quelle: ForschungsberichtVeröffentlichung Integrated nitrogen indicator, national nitrogen target and the current situation in Germany (DESTINO Report 1)(Umweltbundesamt, 2020) Heldstab, Jürg; Schäppi, Bettina; Reutimann, Judith; Infras AG (Zürich); Universität (Gießen); Karlsruher Institut für Technologie; Deutschland. Umweltbundesamt; Geupel, MarkusDie übermäßige Freisetzung reaktiver Stickstoffverbindungen in die Umwelt durch landwirtschaftliche Produktion, Energieumwandlung und Mobilität führt zu Problemen, die dringend gelöst werden müssen: Verlust aquatischer und terrestrischer Biodiversität, Beeinträchtigung der Luftqualität, Freisetzung von Treibhausgasen und erschwerte Nutzung des Grundwassers als Trinkwasser. Die planetare Belastbarkeitsgrenze (Planetary Boundary) für Stickstoff ist deutlich überschritten. Die Bundesregierung hat im Frühjahr 2017 in ihrem ersten Stickstoff-Bericht auf die Problematik hingewiesen und einen ressortübergreifenden Handlungsbedarf für Deutschland festgestellt. Im Zuge dessen hat das Umweltbundesamt dazu mehrere Projekte lanciert, unter anderem das Projekt DESTINO mit zwei Zielen: Erstens die Herleitung eines integrierten Stickstoffindikators, der sektor- und medienübergreifend die aktuellen Belastungen charakterisiert mitsamt einem nationalen Stickstoffziel, das die Belastungsgrenze aufzeigt (Teilbericht 1). Zweitens die Aktualisierung des nationalen Stickstoff-Budgets entlang internationaler Vorgaben aus dem Göteborg-Protokoll (Teilbericht 2). Der vorliegende Bericht ist der Teilbericht 1 des DESTINO Projekts und dokumentiert die Herleitung des integrierten Stickstoffindikators. Dieser orientiert sich an Stickstoffsensitiven Schutzgütern: Erhaltung der biologischen Vielfalt, Vermeidung von Eutrophierung der Ökosysteme, Erhaltung von Grundwasser-, Oberflächengewässer- und Luftqualität sowie Einhaltung der Klimaschutzziele. Der Zielwert des integrierten Stickstoffindikators, das nationale Stickstoffziel, beziffert die Belastungsgrenze, um die Schutzziele einhalten zu können. Mit diesem wirkungsbasierten, nationalen Stickstoffziel wird erstmalig ein der Planetary Boundary komplementärer Wert für die nationale Ebene vorgeschlagen. Aus dem Ausmaß der Überschreitung von Schutzzielen (z.B. Immissionsgrenzwerte) und aus den aktuellen Stickstofffreisetzungen (z. B. Emissionen) gelingt es mit Hilfe von Rückwärtsrechnungen, die Belastungsgrenzen zu quantifizieren (DESTINO-Zielwerte), mit denen die Schutzziele im räumlichen Mittel einzuhalten wären. Der integrierte Stickstoffindikator entspricht der Summe der jährlichen Stickstoffverluste in die Umwelt in Deutschland und beläuft sich aktuell (IST-Zustand) auf 1.574 kt N a-1 (1 kt = 1.000 Tonnen), was rund 19 kg N pro Einwohner pro Jahr entspricht. Die summierten Belastungsgrenzen für die einzelnen Schutzgüter ergeben für das nationale Stickstoffziel den Wert von 1.058 kt N a-1. Einige der ver-wendeten Teilziele sind bisher nur als Etappenziele vorhanden, die langfristigen gesundheitlichen und ökologischen Schutzziele wären noch ambitionierter, sind aber noch nicht festgelegt. Wären sie bekannt, läge das nationale Stickstoffziel noch niedriger. Aufgrund der benutzten Methoden stellt der Zielwert zudem nur den Mindestwert dar, der für die Betrachtung im räumlichen Mittel des Bundesgebietes gilt. Um die Schutzziele überall in Deutschland tatsächlich flächendeckend einhalten zu können, wären noch stärkere Reduktionen der Stickstoffverluste erforderlich. Mit dem berechneten nationalen Stickstoffziel von 1.058 kt N a-1 müssen die aktuellen Stickstoffverluste um mindestens einen Drittel verringert werden. Das nationale Stickstoffziel dient als Ergänzung bestehender, sektorspezifischer Indikatoren und Ziele und soll die dringend nötige Kommunikation unterstützen, die es braucht, um die Verluste reaktiven Stickstoffs zu verringern. Für kommunikative und politische Zwecke ist die Verwendung eines gerundeten Wertes von 1.000 kt N a-1 zulässig. Die parallele Weiterführung und die Überprüfung bestehender Indikatoren für stickstoffbezogen Schutzgüter, inklusive der Überwachung der räumlichen Komponente, sind dabei unerlässlich. Quelle: ForschungsberichtVeröffentlichung Integrierter Stickstoffindikator, nationales Stickstoffziel und IST-Zustand (DESTINO Teilbericht 1)(Umweltbundesamt, 2020) Heldstab, Jürg; Schäppi, Bettina; Reutimann, Judith; Infras AG (Zürich); Universität (Gießen); Karlsruher Institut für Technologie; Deutschland. Umweltbundesamt; Geupel, MarkusDie übermäßige Freisetzung reaktiver Stickstoffverbindungen in die Umwelt durch landwirtschaftliche Produktion, Energieumwandlung und Mobilität führt zu Problemen, die dringend gelöst werden müssen: Verlust aquatischer und terrestrischer Biodiversität, Beeinträchtigung der Luftqualität, Freisetzung von Treibhausgasen und erschwerte Nutzung des Grundwassers als Trinkwasser. Die planetare Belastbarkeitsgrenze (Planetary Boundary) für Stickstoff ist deutlich überschritten. Die Bundesregierung hat im Frühjahr 2017 in ihrem ersten Stickstoff-Bericht auf die Problematik hingewiesen und einen ressortübergreifenden Handlungsbedarf für Deutschland festgestellt. Im Zuge dessen hat das Umweltbundesamt dazu mehrere Projekte lanciert, unter anderem das Projekt DESTINO mit zwei Zielen: Erstens die Herleitung eines integrierten Stickstoffindikators, der sektor- und medienübergreifend die aktuellen Belastungen charakterisiert mitsamt einem nationalen Stickstoffziel, das die Belastungsgrenze aufzeigt (Teilbericht 1). Zweitens die Aktualisierung des nationalen Stickstoff-Budgets entlang internationaler Vorgaben aus dem Göteborg-Protokoll (Teilbericht 2). Der vorliegende Bericht ist der Teilbericht 1 des DESTINO Projekts und dokumentiert die Herleitung des integrierten Stickstoffindikators. Dieser orientiert sich an Stickstoffsensitiven Schutzgütern: Erhaltung der biologischen Vielfalt, Vermeidung von Eutrophierung der Ökosysteme, Erhaltung von Grundwasser-, Oberflächengewässer- und Luftqualität sowie Einhaltung der Klimaschutzziele. Der Zielwert des integrierten Stickstoffindikators, das nationale Stickstoffziel, beziffert die Belastungsgrenze, um die Schutzziele einhalten zu können. Mit diesem wirkungsbasierten, nationalen Stickstoffziel wird erstmalig ein der Planetary Boundary komplementärer Wert für die nationale Ebene vorgeschlagen. Aus dem Ausmaß der Überschreitung von Schutzzielen (z.B. Immissionsgrenzwerte) und aus den aktuellen Stickstofffreisetzungen (z. B. Emissionen) gelingt es mit Hilfe von Rückwärtsrechnungen, die Belastungsgrenzen zu quantifizieren (DESTINO-Zielwerte), mit denen die Schutzziele im räumlichen Mittel einzuhalten wären. Der integrierte Stickstoffindikator entspricht der Summe der jährlichen Stickstoffverluste in die Umwelt in Deutschland und beläuft sich aktuell (IST-Zustand) auf 1.574 kt N a-1 (1 kt = 1.000 Tonnen), was rund 19 kg N pro Einwohner pro Jahr entspricht. Die summierten Belastungsgrenzen für die einzelnen Schutzgüter ergeben für das nationale Stickstoffziel den Wert von 1.058 kt N a-1. Einige der ver-wendeten Teilziele sind bisher nur als Etappenziele vorhanden, die langfristigen gesundheitlichen und ökologischen Schutzziele wären noch ambitionierter, sind aber noch nicht festgelegt. Wären sie bekannt, läge das nationale Stickstoffziel noch niedriger. Aufgrund der benutzten Methoden stellt der Zielwert zudem nur den Mindestwert dar, der für die Betrachtung im räumlichen Mittel des Bundesgebietes gilt. Um die Schutzziele überall in Deutschland tatsächlich flächendeckend einhalten zu können, wären noch stärkere Reduktionen der Stickstoffverluste erforderlich. Mit dem berechneten nationalen Stickstoffziel von 1.058 kt N a-1 müssen die aktuellen Stickstoffverluste um mindestens einen Drittel verringert werden. Das nationale Stickstoffziel dient als Ergänzung bestehender, sektorspezifischer Indikatoren und Ziele und soll die dringend nötige Kommunikation unterstützen, die es braucht, um die Verluste reaktiven Stickstoffs zu verringern. Für kommunikative und politische Zwecke ist die Ver-wendung eines gerundeten Wertes von 1.000 kt N a-1 zulässig. Die parallele Weiterführung und die Überprüfung bestehender Indikatoren für stickstoffbezogen Schutzgüter, inklusive der Überwachung der räumlichen Komponente, sind dabei unerlässlich. Quelle: ForschungsberichtVeröffentlichung Die planetare Stickstoff-Leitplanke als Bezugspunkt einer nationalen Stickstoffstrategie(Umweltbundesamt, 2017) Hoff, Holger; Keppner, Benno; Kahlenborn, Walter; Potsdam-Institut für Klimafolgenforschung; Stockholm Environment Institute; Adelphi Research gGmbH (Berlin); Deutschland. Umweltbundesamt; Lindenthal, Alexandra; Geupel, MarkusDie planetaren Leitplanken (Planetary Boundaries; PBs) beschreiben einen sicheren Handlungsraum ("safe operating space"), innerhalb dessen mit hoher Wahrscheinlichkeit die Funktionsfähigkeit des Erdsystems in einer für den Menschen günstigen Konstellation erhalten bleibt. Damit können sie die vertikale Integration einer nationalen Stickstoffstrategie mit globalen Nachhaltigkeitskriterien und Umweltzielen - und damit auch die internationale Kooperation - unterstützen. Für eine solche Operati-onalisierung und Anwendung der PBs sind die globalen PB-Werte herunterzuskalieren, räumlich explizit darzustellen (downscaling) und für den jeweiligen Kontext zu übersetzen. Erst dann können sie als Richtwerte (benchmarks) dienen, mit denen der nationale Ist-Zustand der Umwelt zu vergleichen ist, und an den nationale Strategien gegebenenfalls entsprechend angepasst werden können (mainstreaming of the PBs). Die planetare Leitplanke für Stickstoff (N-PB) wird von Steffen et al. (2015) mit 63 Millionen Tonnen pro Jahr angegeben. Diese Leitplanke, die gegenwärtig global um den Faktor 2 überschritten wird, bezieht sich nur auf die beabsichtigte Erzeugung und Freisetzung von reaktivem Stickstoff über biologische Fixierung und Düngeranwendung. Sie umfasst nicht die unbeabsichtigten Freisetzungen über Verbrennungsprozesse. Die vorliegende Studie leitet daraus für Deutschland eine Stickstoff Leitplanke von 0,5-0,7 Millionen Tonnen pro Jahr ab, je nachdem ob der globale Wert bezogen auf Deutschlands Anteil an der globalen Landwirtschaftsfläche oder bezogen auf Deutschlands Anteil an der Weltbevölkerung herunterskaliert wird. Diesem benchmark aus PB-Sicht steht ein gegenwärtiger realer Wert von ca. 2,3 Millionen Tonnen gegenüber. Wenn man zusätzlich die, aufgrund deutschen Konsums und entsprechender Nettoimporte landwirtschaftlicher Produkte, im Ausland verursachten Stickstofffrei-setzungen (external footprints) mit berücksichtigt, liegt dieser Wert noch deutlich höher. Eine solche Anwendung der N-PB weist darauf hin, dass die bisherigen - zumeist noch nicht einmal erreichten - deutschen und europäischen Stickstoffziele aus Sicht globaler Nachhaltigkeitskriterien nicht ambitioniert genug sind. So würde z.B. die Einhaltung der EU emission ceilings directive nur zu einer Reduktion des gegenwärtigen Wertes um knapp 0,5 Millionen Tonnen führen. Selbst bei vollständiger Umsetzung der vom Sachverständigenrat für Umweltfragen (SRU) und vom Umweltbundesamt (UBA) geforderten Halbierung des N-Überschusses auf landwirtschaftlichen Flächen, würde die auf Deutschland herunterskalierte N-PB noch immer um ca. 200% überschritten. Zu ihrer Einhaltung wären zusätzliche Emissionsminderungen in der Landwirtschaft und darüber hinaus (v.a. in den Sektoren Ener-gie, Transport und Industrie) erforderlich. Eine Erhöhung der Effizienz der Stickstoffnutzung (nitrogen use efficiency - NUE) auf allen Ebenen und über die gesamte Wertschöpfungskette stellt einen wichtigen Hebel zur Erreichung verschiedener Umwelt- und Nachhaltigkeitsziele dar. Neben der Verminderung der Stickstofffreisetzung in die Umwelt lassen sich zusätzliche Verbesserungen (co-benefits) z.B. in Bezug auf Land, Wasser, Energie, Ernährungssicherheit und andere Entwicklungsziele wie sie in den SDGs benannt sind, erreichen. Durch Erhöhung der Ressourceneffizienz kann der in die Umwelt freigesetzte Anteil des eingesetzten Stickstoffs reduziert werden. Da die N-PB über maximal zulässige Umweltkonzentrationen definiert ist, kann sie bei erhöhter Ressourceneffizienz höher angesetzt werden. Entscheidend für die vertikale Integration von deutschen und internationalen Umweltzielen und Nachhaltigkeitskriterien ist der "Dreiklang" aus i) Verringerung der Stickstofffreisetzung innerhalb Deutschlands, ii) Reduktion des (handelsbedingten) deutschen Stickstoff-footprints im Ausland sowie iii) internationale Kooperation für eine verbesserte Stickstoffnutzung und Ressourceneffizienz in allen Bereichen, z.B. über Investitionen, Entwicklungszusammenarbeit und Wissens- und Technologietransfer. Dieser Dreiklang entspricht auch dem Leitbild der nationalen Implementierung der SDGs, innerhalb Deutschlands unter gleichzeitiger Beachtung dieser Ziele auch im Ausland (implementation in, by and with Germany). Anknüpfungspunkte für eine verbesserte vertikale Politikkohärenz von national über regional bis global sind z.B. die gemeinsame europäische Agrarpolitik, internationale Handelsabkommen sowie die verschiedenen multilateralen Umweltabkommen. Aus der Operationalisierung und Anwendung der N-PB für die integrierte nationale Stickstoffstrategie ergeben sich umgekehrt auch Hinweise für die Weiterentwicklung der planetaren Leitplanke selber, z.B. in Hinblick auf deren Erweiterung über den Landwirtschaftssektor hinaus. Weiterentwicklung der PBs und deren Anwendung müssen iterativ und wechselseitig erfolgen. Dazu sollte die Stickstoffstrategie dynamisch weiterentwickelt werden, so dass neues Wissen (z.B. aus der Begleitforschung) konti-nuierlich eingepflegt werden kann ("adaptive management"). Entsprechend dem systemischen Charakter des PB Konzepts und der Komplexität des Stickstoffkreislaufs, bedarf dies eines umfassenden Dialogs mit Partnern aus allen relevanten Sektoren, gemäß dem Future Earth Prinzip von "co-design & co-production of relevant knowledge", d.h. in wechselseitiger Abstimmung zwischen Politkern, Entschei-dungsträgern und Wissenschaftlern. Quelle: ForschungsberichtVeröffentlichung Thematischer Umweltatlas: Medienwirksame Aufbereitung von Umweltinformationen durch Verknüpfung von räumlichen Darstellungen, Umweltdaten und Fachbeiträgen(Umweltbundesamt, 2021) Andrian-Werburg, Stefan von; Buth, Mareike; Eichhorn, Daniel; Bosch & Partner GmbH (Berlin); Leibniz-Institut für ökologische Raumentwicklung; Deutschland. Umweltbundesamt; Neuberger, AlexanderDer thematische Umweltatlas des Umweltbundesamtes (UBA), im Folgenden kurz als UBA-Umweltatlas bezeichnet, wurde im Rahmen des Forschungs- und Entwicklungsvorhabens als zusätzliches Informationsangebot für die UBA-Website entwickelt. Ziel war es, ein neues Format zu realisieren, mit dem Schwerpunktthemen der Umweltpolitik schutzgut- und sektorübergreifend präsentiert werden können. Es sollte insbesondere auf die Zielgruppe "breite Öffentlichkeit" zugeschnitten sein und darüber hinaus auch Multiplikatorinnen und Multiplikatoren wie Journalistinnen und Journalisten sowie Lehrende adressieren. Der UBA-Umweltatlas wurde vor diesem Hintergrund als integrierte Informationsplattform konzipiert, auf der komplexe Umweltthemen in einzelnen Modulen, sogenannten Bausteinen, grafisch und inhaltlich aufbereitet werden. Die Bausteine vermitteln anhand von interaktiven Karten, Infografiken und Diagrammen, ergänzt durch Bilder und Videos, einen breiten Überblick über den jeweiligen Themenkomplex und dienen als Türöffner zu vertiefenden Detail-Informationen. Im Vorhaben wurde das Konzept für Struktur, Gestaltung und technische Umsetzung für den UBA-Umweltatlas entwickelt und in exemplarischen Bausteinen zu den Themen "Reaktiver Stickstoff" und "Bauen, Wohnen, Haushalte" umgesetzt. Des Weiteren wurden Handreichungen und unterstützende Materialien erstellt, die die Grundlage für die Pflege bestehender Bausteine sowie für die perspektivische Entwicklung weiterer Bausteine durch UBA-Mitarbeitende bilden. Quelle: ForschungsberichtVeröffentlichung Thematischer Umweltatlas: Medienwirksame Aufbereitung von Umweltinformationen durch Verknüpfung von räumlichen Darstellungen, Umweltdaten und Fachbeiträgen(Umweltbundesamt, 2021) Andrian-Werburg, Stefan von; Buth, Mareike; Eichhorn, Daniel; Bosch & Partner GmbH (Berlin); Leibniz-Institut für ökologische Raumentwicklung; Deutschland. Umweltbundesamt; Neuberger, AlexanderDer Bericht stellt die Ergebnisse des Vorhabens "Thematischer Umweltatlas: Medienwirksame Aufbereitung von Umweltinformationen durch Verknüpfung von räumlichen Darstellungen, Umweltdaten und Fachbeiträgen" vor. Im Vorhaben wurde ein Rahmenkonzept für einen digitalen UBA-Umweltatlas ausgearbeitet. Zudem wurden zwei Pilotbausteine zu den Themen "Reaktiver Stickstoff" und "Bauen, Wohnen, Haushalte" konzipiert und exemplarisch für die Nutzung in der Berichterstattung umgesetzt. Der Bericht beleuchtet die Vorgehensweise und Arbeitsschritte, die bei der Planung, Konzeption und Umsetzung des Umweltatlas bzw. der Pilotbausteine bedeutsam waren, und zeigt Perspektiven für die Weiterentwicklung auf.Veröffentlichung Maßnahmenvorschläge für ein Aktionsprogramm zur integrierten Stickstoffminderung(Umweltbundesamt, 2021) Oehlmann, Malte; Rubel, Catharina; Klaas, Katharina; Adelphi Research gGmbH (Berlin); Infras AG (Zürich); Helmholtz-Zentrum für Umweltforschung; Deutschland. Umweltbundesamt; Geupel, MarkusDie Freisetzung reaktiver Stickstoffverbindungen wie Ammoniak, Stickstoffoxide, Nitrat oder Lachgas in die Umwelt hat massive Auswirkungen auf den natürlichen Stickstoffkreislauf. Neben zahlreichen negativen ökologischen Auswirkungen auf Luft, Böden, Gewässer und die Biodiversität schlagen sich die Emissionen reaktiven Stickstoffs auch in erheblichen sozioökonomischen Kosten Auswirkungen nieder. Bisher adressiert die Umweltpolitik die negativen Auswirkungen von Stickstoffüberschüssen vor allem auf der Ebene einzelner Verursachersektoren. Hierdurch sind ausdifferenzierte gesetzliche Regelungen entstanden, die jeweils nur spezifische Aspekte des Stickstoffproblems adressieren und dabei eine mögliche Verlagerung des Stickstoffs in andere Umweltbereiche nicht ausreichend berücksichtigen. Vor dem Hintergrund eines integrierten Ansatzes wurde deshalb ein übergreifendes Maßnahmenpaket entwickelt, welches die Stickstoffemissionen bis zum Jahr 2030 so reduziert, dass ein integriertes Stickstoffziel, das vom Umweltbundesamt entwickelt wurde, erreicht wird. Der Vergleich einer Referenzentwicklung mit dem integrierten Stickstoffziel ergibt dabei die Zielstellung für das zu entwickelnde Maßnahmenpaket. Um die Ziele im Jahr 2030 zu erreichen, wurde zunächst eine breite Zusammenstellung möglicher Maßnahmen erstellt. Darüber hinaus, wurden im Zuge einer rechtlichen Betrachtung systematisch und umfassend alle bestehenden Regelungen mit Relevanz für den Eintrag reaktiver Stickstoffverbindungen in die Umwelt sowohl im internationalen und europäischen Recht als auch im nationalen Recht ermittelt, dargestellt sowie hinsichtlich ihrer Kohärenz und Steuerungseffektivität analysiert. Um die Ziellücke zwischen Referenz- und Ziel-Szenario zu schließen, wurde dann, basierend auf dem Maßnameninventar, ein Maßnahmenpaket entwickelt. Aus dem Inventar von insgesamt knapp 100 Maßnahmen wurden 19 technisch und politisch besonders gut umsetzbare Maßnahmen aus den Bereichen Verkehr, Landwirtschaft und Industrie mit der Prämisse ausgewählt, die erforderliche Menge Stickstoff zu möglichst geringen Kosten zu reduzieren. Die vereinfachte Kosten-Nutzen-Analyse des Maßnahmenpaketes zeigt, dass der Nutzen aufgrund der Reduktion der externen Kosten deutlich höher sein dürfte, als die Vermeidungs- und Umsetzungskosten der Maßnahmen. Die Zielstellungen für das Jahr 2030 und somit die sowohl ökologisch als auch ökonomisch positiven Effekte können jedoch nur gewährleistet werden, wenn das vollständige Paket umgesetzt wird. Quelle: Forschungsbericht