Listen
14 Ergebnisse
Filter
Einstellungen
Suchergebnisse
Veröffentlichung A new integrated in silico strategy for the assessment and prioritization(2016) Pizzo, Fabiola; Lombardo, Anna; Brandt, Marc; Manganaro, Alberto; Benfenati, EmilioVeröffentlichung A weight-of-evidence approach to assess chemicals: case study on the assessment of persistence of 4,6-substituted phenolic benzotriazoles in the environment(2016) Becker, Eva; Brandt, Marc; Jöhncke, Ulrich; Sättler, Daniel; Schulte, ChristophBackground
One important purpose of the European REACH Regulation (EC No. 1907/2006) is to promote the use of alternative methods for assessment of hazards of substances in order to avoid animal testing. Experience with environmental hazard assessment under REACH shows that efficient alternative methods are needed in order to assess chemicals when standard test data are missing. One such assessment method is the weight-of-evidence (WoE) approach. In this study, the WoE approach was used to assess the persistence of certain phenolic benzotriazoles, a group of substances including also such of very high concern (SVHC).
Results
For phenolic benzotriazoles, assessment of the environmental persistence is challenging as standard information, i.e. simulation tests on biodegradation are not available. Thus, the WoE approach was used: overall information resulting from many sources was considered, and individual uncertainties of each source analysed separately. In a second step, all information was aggregated giving an overall picture of persistence to assess the degradability of the phenolic benzotriazoles under consideration although the reliability of individual sources was incomplete.
Conclusions
Overall, the evidence suggesting that phenolic benzotriazoles are very persistent in the environment is unambiguous. This was demonstrated by a WoE approach considering the prerequisites of REACH by combining several limited information sources. The combination enabled a clear overall assessment which can be reliably used for SVHC identification. Finally, it is recommended to include WoE approaches as an important tool in future environmental risk assessments.
Quelle: https://enveurope.springeropen.comVeröffentlichung Integrated in silico strategy for PBT assessment and prioritization under REACH(2016) Pizzo, Fabiola; Lombardo, Anna; Manganaro, Alberto; Brandt, Marc; Cappelli, Claudia I.; Petoumenou, Maria I.; Albanese, Federica; Roncaglioni, Alessandra; Benfenati, EmilioChemicals may persist in the environment, bioaccumulate and be toxic for humans and wildlife, posing great concern. These three properties, persistence (P), bioaccumulation (B), and toxicity (T) are the key targets of the PBT-hazard assessment. The European regulation for the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) requires assessment of PBT-properties for all chemicals that are produced or imported in Europe in amounts exceeding 10 tonnes per year, checking whether the criteria set out in REACH Annex XIII are met, so the substance should therefore be considered to have properties of very high concern. Considering how many substances can fall under the REACH regulation, there is a pressing need for new strategies to identify and screen large numbers fast and inexpensively. An efficient non-testing screening approach to identify PBT candidates is necessary, as a valuable alternative to money- and time-consuming laboratory tests and a good start for prioritization since few tools exist (e.g. the PBT profiler developed by USEPA).
The aim of this work was to offer a conceptual scheme for identifying and prioritizing chemicals for further assessment and if appropriate further testing, based on their PBT-potential, using a non-testing screening approach. We integrated in silico models (using existing and developing new ones) in a final algorithm for screening and ranking PBT-potential, which uses experimental and predicted values as well as associated uncertainties. The Multi-Criteria Decision-Making (MCDM) theory was used to integrate the different values. Then we compiled a new set of data containing known PBT and non-PBT substances, in order to check how well our approach clearly differentiated compounds labeled as PBT from those labeled as non-PBT. This indicated that the integrated model distinguished between PBT from non-PBT compounds.
Quelle: http://www.sciencedirect.comVeröffentlichung Persistent, mobile and toxic substances in the environment: a spotlight on current research and regulatory activities(2020) Rüdel, Heinz; Körner, Wolfgang; Letzel, Thomas; Neumann, MichaelCertain persistent and polar substances may pose a hazard to drinking water resources. To foster the knowledge exchange in this field the Working Group Environmental Monitoring of the German Chemical Society (GDCh) Division Environmental Chemistry and Ecotoxicology discussed at their meeting in December 2018 the significance and relevance of persistent, mobile and toxic chemicals (PMT substances) in the environment. Five oral contributions highlighted not only various aspects such as the identification of potential PMT substances based on certain properties and their possible regulation under the European REACH regulation, but also current developments in the analysis of PMT substances and results from environmental monitoring. The data presented prove that many persistent and mobile substances can be detected in surface waters. Once detected, it can be complex and costly to identify sources and reduce inputs, as a case study on 1,4-dioxane in Bavarian surface waters shows. The same applies to the removal of polar substances from raw water for drinking water production. Today, scientific advances in analytical methods make it easier to identify and quantify even very polar substances in water samples. In addition to the targeted analysis of critical chemicals, non-target screening is playing an increasingly important role. This opens up the possibility of detecting substances in water samples that have not previously been investigated in routine monitoring and testing their relevance for humans and the environment. However, the list of potentially occurring PM substances that have not yet been investigated is still very long. Further methodological improvements seem necessary here. In view of the evidence for the presence of PMT substances in the environment (e.g., trifluoroacetic acid and 1,4-dioxane) and the potential risks for drinking water abstraction, it seems important under consideration of the precautionary principle to identify and prioritise relevant REACH-registered substances. The assessment should be based on the intrinsic properties and the emission potential of the compounds. The implementation of a detailed proposal made at European level to regulate PMT and very persistent and very mobile (vPvM) substances in the context of REACH would ensure that chemicals identified as being substances of very high concern according to the PMT and vPvM criteria are subject to authorisation in future. © The Author(s) 2020Veröffentlichung Time trend of exposure to dechloranes: Plasma samples of German young adults from the environmental specimen bank collected from 1995 to 2017(2020) Fromme, Hermann; Thomsen, Cathrine; Aschenbrenner, Bettina; Kolossa-Gehring, Marike; Weber, TillDechloranes, like Dechlorane Plus® are commonly used flame retardants identified by the EU as substances of very high concern (SVHC) because of their persistence and bioaccumulation potential. To characterize the dechlorane exposure of Germans in the last two decades, 180 archived blood plasma samples of the German Environmental Specimen Bank (students aged 20-29 years) collected at six time points between 1995 and 2017 were analyzed for four dechloranes; namely Dechlorane Plus® (syn- and anti-DDC-CO), dechlorane 602 (DDC-DBF), and dechlorane 603 (DDC-Ant). These were quantified using a GC-MS/MS method. Overall, anti- and syn-DDC-CO were detected in 88% and 98% of the samples, whereas DDC-DBF and DDC-Ant were found in 40% and 37% of the samples, respectively. The median (95th percentile) values were 1.0 ng/g lipid weight (l.w.) (3.0 ng/g l.w.). for anti-DDC-CO, 0.6 ng/g l.w (1.9 ng/g l.w.). for syn-DDC-CO, 0.1 ng/g l.w (0.6 ng/g l.w.). for DDC-DBF, and 0.1 ng/g l.w (0.2 ng/g l.w.). for DDC-Ant. The 95th percentile concentrations of the sum of syn- and anti-DDC-CO decreased from 4.2 ng/g l.w. in 1995, to 2.9 ng/g l.w. in 1999, and subsequently increased to 3.7 ng/g l.w. in 2008, and up to 5.9 ng/g l.w. in 2017. A statistically significant decrease with time was observed for DDC-DBF and DDC-Ant, but not for DDC-CO. Our medians found in blood samples in 2017 are similar to those observed in Germany in 2013/14, but higher compared to values reported in other European countries. Overall, more toxicological and monitoring data is needed to better characterize the potential impact on health. © 2020 Elsevier GmbHVeröffentlichung Corrigendum to "Aging of tire and road wear particles in terrestrial and freshwater environments - a review on processes, testing, analysis and impact" [Chemosphere 288 (2022) 132467](2022) Wagner, Stephan; Klöckner, Philipp; Reemtsma, ThorstenVeröffentlichung Aging of tire and road wear particles in terrestrial and freshwater environments - a review on processes, testing, analysis and impact(2022) Wagner, Stephan; Klöckner, Philipp; Reemtsma, ThorstenThe environmental fate of tire and road wear particles (TRWPs) receives increasing attention due to the per capita emission volumes of 0.2-5.5 kg/(cap year) and recent reports on the environmental hazard of TRWP constituents. It is expected that aging impacts TRWPs fate in the environment but detailed knowledge is quite limited, yet. Making use of information on tire aging, the available knowledge on environmental aging processes such as thermooxidation, photooxidation, ozonolysis, shear stress, biodegradation and leaching is reviewed here. Experimental techniques to simulate aging are addressed as are analytical techniques to determine aging induced changes of TRWPs, covering physical and chemical properties. The suitability of various tire wear test materials is discussed. Findings and methods from tire aging can be partially applied to study aging of TRWPs in the environment. There is a complex interplay between aging processes in the environment that needs to be considered in future aging studies. In addition to existing basic qualitative understanding of the aging processes, quantitative understanding of TRWP aging is largely lacking. Aging in the environment needs to consider the TRWPs as well as chemicals released. Next steps for filling the gaps in knowledge on aging of TRWPs in the environment are elaborated. © 2021 The AuthorsVeröffentlichung Fate of 14C-labelled ionic organic chemicals in a water-sediment system and surface water(2022) Holzmann, Hannah; Ackermann, Juliane; Claßen, DanielaThe persistence assessment of organic chemicals is based on neutral reference substances. Therefore, our study aimed at investigating the influence of a chemical charge on the degradation of organic compounds in a water-sediment system (OECD 308) and surface water (OECD 309). We used radiolabelled 4-n-dodecylbenzenesulfonic acid sodium salt (14C-DS-, anionic), 4-n-dodecylbenzyltrimethylammonium chloride (14C-DA+, cationic) and 4-n-dodecylphenol (14C-DP, non-ionic) which are structurally similar except their charges. After 120 days of incubation in a water-sediment system, 68% (14C-DS-), 6% (14C-DA+) and 63% (14C-DP) of the applied radioactivity (AR) were mineralized. The formation of non-extractable residues (NER) after 120 days was highest for 14C-DA+ (33% AR), followed by 14C-DS- (19% AR) and 14C-DP (14% AR). Dissipation half-lives (DT50) at 12 ˚C decreased as follows: 14C-DA+ (346 days) >> 14C-DS- (47 days) > 14C-DP (30 days). After 60 days of incubation in surface water with suspended sediment, mineralization of 14C-DS-, 14C-DA+ and 14C-DP accounted for 63%, 7% and 58% AR, respectively. Highest NER formation was observed for 14C-DP (21% AR), followed by 14C-DA+ (14% AR) and 14C-DS- (9% AR). DT50 (12 ˚C) decreased as follows: 14C-DA+ (45 days) > 14C-DP (3 days) > 14C-DS- (2 days). We showed that a positive charge reduces the degradability of organic chemicals in both test systems. From a scientific point of view, simulation studies following OECD 309 should always be complimented by tests with high sorption capacity, e.g. OECD 308 and OECD 307 tests in order to assess the degradation of a compound, especially in case of cationic organic compounds. © 2022 The AuthorsVeröffentlichung Ecological and spatial variations of legacy and emerging contaminants in white-tailed sea eagles from Germany: implications for prioritisation and future risk management(2022) Badry, Alexander; Gkotsis, Georgios; Treu, GabrieleThe increasing use of chemicals in the European Union (EU) has resulted in environmental emissions and wildlifeexposures. For approving a chemical within the EU, producers need to conduct an environmental risk assessment,which typically relies on data generated under laboratory conditions without considering the ecological andlandscape context. To address this gap and add information on emerging contaminants and chemical mixtures,we analysed 30 livers of white-tailed sea eagles (Haliaeetus albicilla) from northern Germany with highresolution-mass spectrometry coupled to liquid and gas chromatography for the identification of >2400 con-taminants. We then modelled the influence of trophic position (δ15N), habitat (δ13C) and landscape on chemicalresidues and screened for persistent, bioaccumulative and toxic (PBT) properties using an in silico model tounravel mismatches between predicted PBT properties and observed exposures. Despite having generally lowPBT scores, most detected contaminants were medicinal products with oxfendazole and salicylamide being mostfrequent. Chemicals of the Stockholm Convention such as 4,4â€2-DDE and PCBs were present in all samples belowtoxicity thresholds. Among PFAS, especially PFOS showed elevated concentrations compared to other studies. Incontrast, PFCA levels were low and increased with δ15N, which indicated an increase with preying on piscivorousspecies. Among plant protection products, spiroxamine and simazine were frequently detected with increasingconcentrations in agricultural landscapes. The in silico model has proven to be reliable for predicting PBTproperties for most chemicals. However, chemical exposures in apex predators are complex and do not solely relyon intrinsic chemical properties but also on other factors such as ecology and landscape. We therefore recom-mend that ecological contexts, mixture toxicities, and chemical monitoring data should be more frequentlyconsidered in regulatory risk assessments, e.g. in a weight of evidence approach, to trigger risk managementmeasures before adverse effects in individuals or populations start to manifest. © 2021 The AuthorsVeröffentlichung Assessment of contaminants of emerging concern in European apex predators and their prey by LC-QToF MS wide-scope target analysis(2022) Gkotsis, Georgios; Badry, Alexander; Nika, Maria-Christina; Claßen, Daniela; Nikolopoulou, Varvara; Drost, Wiebke; Koschorreck, Jan; Treu, GabrieleApex predators are good indicators of environmental pollution since they are relatively long-lived and their high trophic position and spatiotemporal exposure to chemicals provides insights into the persistent, bioaccumulative and toxic (PBT) properties of chemicals. Although monitoring data from apex predators can considerably support chemicalsâ€Ì management, there is a lack of pan-European studies, and longer-term monitoring of chemicals in organisms from higher trophic levels. The present study investigated the occurrence of contaminants of emerging concern (CECs) in 67 freshwater, marine and terrestrial apex predators and in freshwater and marine prey, gathered from four European countries. Generic sample preparation protocols for the extraction of CECs with a broad range of physicochemical properties and the purification of the extracts were used. The analysis was performed utilizing liquid (LC) chromatography coupled to high resolution mass spectrometry (HRMS), while the acquired chromatograms were screened for the presence of more than 2,200 CECs through wide-scope target analysis. In total, 145 CECs were determined in the apex predator and their prey samples belonging in different categories, such as pharmaceuticals, plant protection products, per- and polyfluoroalkyl substances, their metabolites and transformation products. Higher concentration levels were measured in predators compared to prey, suggesting that biomagnification of chemicals through the food chain occurs. The compounds were prioritized for further regulatory risk assessment based on their frequency of detection and their concentration levels. The majority of the prioritized CECs were lipophilic, although the presence of more polar contaminants should not be neglected. This indicates that holistic analytical approaches are required to fully characterize the chemical universe of biota samples. Therefore, the present survey is an attempt to systematically investigate the presence of thousands of chemicals at a European level, aiming to use these data for better chemicals management and contribute to EU Zero Pollution Ambition. © 2022 The Authors.