Vorschaubild nicht verfügbar

Publikationstyp

Wissenschaftlicher Artikel

Erscheinungsjahr

2022
'http://rightsstatements.org/vocab/InC/1.0/'

Fate of 14C-labelled ionic organic chemicals in a water-sediment system and surface water

Herausgeber

Quelle

Chemosphere
303 (2022), Heft Part

Schlagwörter

Persistenz, Halbwertszeit

Forschungskennzahl (FKZ)

Verbundene Publikation

Zitation

HOLZMANN, Hannah, Juliane ACKERMANN und Daniela CLASSEN, 2022. Fate of 14C-labelled ionic organic chemicals in a water-sediment system and surface water. Chemosphere [online]. 2022. Bd. 303 (2022), Heft Part. DOI 10.60810/openumwelt-737. Verfügbar unter: https://openumwelt.de/handle/123456789/2716
Zusammenfassung englisch
The persistence assessment of organic chemicals is based on neutral reference substances. Therefore, our study aimed at investigating the influence of a chemical charge on the degradation of organic compounds in a water-sediment system (OECD 308) and surface water (OECD 309). We used radiolabelled 4-n-dodecylbenzenesulfonic acid sodium salt (14C-DS-, anionic), 4-n-dodecylbenzyltrimethylammonium chloride (14C-DA+, cationic) and 4-n-dodecylphenol (14C-DP, non-ionic) which are structurally similar except their charges. After 120 days of incubation in a water-sediment system, 68% (14C-DS-), 6% (14C-DA+) and 63% (14C-DP) of the applied radioactivity (AR) were mineralized. The formation of non-extractable residues (NER) after 120 days was highest for 14C-DA+ (33% AR), followed by 14C-DS- (19% AR) and 14C-DP (14% AR). Dissipation half-lives (DT50) at 12 ˚C decreased as follows: 14C-DA+ (346 days) >> 14C-DS- (47 days) > 14C-DP (30 days). After 60 days of incubation in surface water with suspended sediment, mineralization of 14C-DS-, 14C-DA+ and 14C-DP accounted for 63%, 7% and 58% AR, respectively. Highest NER formation was observed for 14C-DP (21% AR), followed by 14C-DA+ (14% AR) and 14C-DS- (9% AR). DT50 (12 ˚C) decreased as follows: 14C-DA+ (45 days) > 14C-DP (3 days) > 14C-DS- (2 days). We showed that a positive charge reduces the degradability of organic chemicals in both test systems. From a scientific point of view, simulation studies following OECD 309 should always be complimented by tests with high sorption capacity, e.g. OECD 308 and OECD 307 tests in order to assess the degradation of a compound, especially in case of cationic organic compounds. © 2022 The Authors