Aufsätze

Dauerhafte URI für die Sammlunghttps://openumwelt.de/handle/123456789/6

Listen

Suchergebnisse

Gerade angezeigt 1 - 10 von 15
  • Veröffentlichung
    Glyphosate in German adults - Time trend (2001 to 2015) of human exposure to a widely used herbicide
    (2017) Conrad, André; Schröter-Kermani, Christa; Hoppe, Hans-Wolfgang; Kolossa-Gehring, Marike; Pieper, Silvia; Rüther, Maria
  • Veröffentlichung
    Human biomonitoring reference values: Differences and similarities between approaches for identifying unusually high exposure of pollutants in humans
    (2019) Apel, Petra; Conrad, André; Kolossa-Gehring, Marike; Rucic, Enrico; Vogel, Nina
    In exposure and risk assessment, the indication of unusually high exposure levels in humans to chemicals has been considered as an important objective for decades. To realize this objective, reference values (RV) need to be derived. However, while there is a tendency towards using the 95th percentile as a basis for deriving these reference values there is still no consensus. Moreover, side approaches have evolved including deriving RVs based on other percentiles, reporting multiple RVs or only reporting percentiles. The purpose of this article is to give an overview of the current literature, to point out differences and similarities between existing approaches, and to highlight important criteria for the derivation of RVs. We observe the majority of studies to base RVs on the 95th percentile and its 95% confidence interval which can been justified by statistical paradigms, present arguments for a single defined reference value, and discuss characteristics which call for more consistency. To conclude, our overview provides a first step towards a more homogenous and standardized derivation procedure to identify unusually high exposures in exposure science. © 2018 The Authors. Published by Elsevier GmbH.
  • Veröffentlichung
    Benefits of cooperation among large-scale cohort studies and human biomonitoring projects in environmental health research: An exercise in blood lead analysis of the Environment and Child Health International Birth Cohort Group
    (2019) Nakayama, Shoji F.; Conrad, André; Espina, Carolina; Kamijima, Michihiro; Kolossa-Gehring, Marike; Murawski, Aline
    A number of prospective cohort studies are ongoing worldwide to investigate the impact of foetal and neonatal exposures to chemical substances on child health. To assess multiple exposure (mixture) effects and low prevalence health outcomes it is useful to pool data from several studies and conduct mega-data-analysis. To discuss a path towards data harmonization, representatives from several large-scale birth cohort studies and a biomonitoring programme formed a collaborative group, the Environment and Child Health International Birth Cohort Group (ECHIBCG). In this study, an intra-laboratory trial was performed to harmonize existing blood lead measurements within the groups' studies. Then, decentralized analyses were conducted in individual countries' laboratories to evaluate blood lead levels (BLL) in each study. The measurements of pooled BLL samples in French, German and three Japanese laboratories resulted in an overall mean blood lead concentration of 8.66 ng¯1 (95% confidence interval: 8.59-8.72 ng¯1) with 3.0% relative standard deviation. Except for China's samples, BLL from each study were comparable with mean concentrations below or close to 10ng¯1. The decentralized multivariate analyses revealed that all models had coefficients of determination below 0.1. Determinants of BLL were current smoking, age >35 years and overweight or obese status. The three variables were associated with an increase in BLL in each of the five studies, most strongly in France by almost 80% and the weakest effect being in Norway with only 15%; for Japan, with the far largest sample (~18,000), the difference was 36%. This study successfully demonstrated that the laboratory analytical methods were sufficiently similar to allow direct comparison of data and showed that it is possible to harmonize the epidemiological data for joint analysis. This exercise showed the challenges in decentralized data analyses and reinforces the need for data harmonization among studies. © 2019 The Authors. Published by Elsevier GmbH.
  • Veröffentlichung
    Trends in characteristics of 24-h urine samples and their relevance for human biomonitoring studies - 20 years of experience in the German Environmental Specimen Bank
    (2019) Lermen, Dominik; Bartel-Steinbach, Martina; Conrad, André; Gwinner, Frederik; Kolossa-Gehring, Marike; Weber, Till
    To document trends in human exposure to environmental pollutants, the German Environmental Specimen Bank (ESB) has been routinely collecting and archiving 24-h urine samples from young adults at four sampling sites in Germany on an annual basis. For the purpose of normalizing measured analyte concentrations, urinary creatinine (UC), specific gravity (SG), conductivity (CON), and total urine volume (UVtot) of 24-h urine samples have also been recorded. These parameters are however susceptible to variation over time, as well as within/among participants and normalization against them can thus affect the interpretation of data regarding exposure to environmental pollutants. To evaluate the influence of normalization against these parameters, we first sought to determine variations of these parameters with regard to differences between sexes and trends over time. We analysed data from 8619 urine samples collected from 1997 to 2016. We observed an inverse relation between UVtot and UC, SG, and CON. We also found differences between sexes for UC, SG and CON, but not UVtot. UC, SG, and CON showed significant decreasing trends over time in both sexes. In contrast, a significant increase of over 30% in UVtot, independent of participant age and BMI, was revealed. This increase in UVtot and the concomitant sample dilution is likely to have an impact on measured analyte concentrations in 24-h urine samples. Hence, normalization of urinary concentrations is warranted when interpreting time trends of human exposure. Next, urinary calcium (Ca2+) concentrations of ESB participants were used to demonstrate the effects of normalization against each of the four urine parameters. From 1997 to 2016, measured Ca2+ concentrations showed a statistically significant but scientifically implausible decrease. Normalization of Ca2+ concentrations against UVtot (by calculating the total daily excretion), UC, or CON, but not SG, eliminated this decrease. Consistent with previous work, Ca2+ concentrations in urine and total daily Ca2+ excretion were higher for males than females. Normalization against UC, SG, or CON, however, attenuated this difference. Thus, to avoid misinterpretation in trend analysis and sex-specific excretion in 24-h urine samples, the calculation of the total daily excretion is recommended.
  • Veröffentlichung
    Hexamoll® DINCH and DPHP metabolites in urine of children and adolescents in Germany. Human biomonitoring results of the German Environmental Survey GerES V, 2014-2017
    (2019) Conrad, André; Kolossa-Gehring, Marike; Rucic, Enrico; Schmied-Tobies, Maria Irene Hilde; Schulz, Christine; Schwedler, Gerda
    The production and use of the plasticisers Hexamoll® DINCH (di-(iso-nonyl)-cyclohexane-1,2-dicarboxylate) and DPHP (di-(2-propylheptyl) phthalate) have increased after both chemicals were introduced into the market in the early 2000s as substitutes for restricted high molecular weight phthalates. During the population representative German Environmental Survey (GerES) of Children and Adolescents (GerES V, 2014-2017), we collected urine samples and measured the concentrations of DINCH and DPHP metabolites in 2228 and in a subsample of 516 participants, respectively. We detected DINCH and DPHP metabolites in 100% and 62% of the 3-17 years old children and adolescents, respectively. Geometric means of DINCH metabolites were 2.27 myg/L for OH-MINCH, 0.93 myg/L for oxo-MINCH, 1.14 myg/L for cx-MINCH and 3.47 myg/L for DINCH (Sigma of OH-MINCH + cx-MINCH). Geometric means of DPHP metabolites were 0.30 myg/L for OH-MPHP, 0.32 myg/L for oxo-MPHP and 0.64 myg/L for DPHP (Sigma of OH-MPHP + oxo-MPHP). The 3-5 years old children had almost 3-fold higher DINCH biomarkers levels than adolescents (14-17 years). Higher concentrations of DPHP biomarkers among young children only became apparent after creatinine adjustment. Urinary levels of DINCH but not of DPHP biomarkers were associated with the levels of the respective plasticisers in house dust. When compared to HBM health-based guidance values, we observed no exceedance of the HBM-I value of 1 mg/L for DPHP (Sigma of OH-MPHP + oxo-MPHP). However, 0.04% of the children exceeded the health based guidance value HBM-I of 3 mg/L for DINCH (Sigma of OH-MINCH + cx-MINCH). This finding shows that even a less toxic replacement of restricted chemicals can reach exposures in some individuals, at which, according to current knowledge, health impacts cannot be excluded with sufficient certainty. In conclusion, we provide representative data on DINCH and DPHP exposure of children and adolescents in Germany. Further surveillance is warranted to assess the substitution process of plasticisers, and to advise exposure reduction measures, especially for highly exposed children and adolescents. Providing the results to the European HBM Initiative HBM4EU will support risk assessment and risk management not only in Germany but also in Europe. © 2019 The Authors. Published by Elsevier GmbH
  • Veröffentlichung
    Polychlorinated biphenyls (PCB) and organochlorine pesticides (OCP) in blood plasma - results of the German environmental survey for children and adolescents 2014-2017 (GerES V)
    (2020) Bandow, Nicole; Conrad, André; Kolossa-Gehring, Marike; Murawski, Aline; Sawal, George
    The German Environmental Survey for Children and Adolescents 2014-2017 (GerES V) investigated the current internal exposure to polychlorinated biphenyls (PCB) and organochlorine pesticides (OCP). These analyses were carried out for a population-representative sub-sample of 1135 children and adolescents (aged 3-17 years) of all 2394 GerES V participants. Blood plasma samples were analyzed for seven indicator PCB (PCB 28, PCB 52, PCB 101, PCB 118, PCB 138, PCB 153 and PCB 180) and selected OCP (hexachlorobenzene, three hexachlorocyclohexane isomers, 4,4'-DDT, 4,4'-DDD and 4,4'-DDE). Despite risk mitigation measures and bans put into force some decades ago children and adolescents living in Germany are still exposed to PCB and OCP: Highest geometric mean plasma concentrations were measured for 4,4'-DDE (0.158 g/L), followed by PCB 138 (0.049 g/L), PCB 153 (0.066 g/L) and PCB 180 (0.032 g/L). Different application patterns of compounds between former East and former West Germany are still reflected by differences in plasma concentrations. Significant differences between age groups and by sexes were found. Moreover, the influence of breastfeeding and fish consumption, which was also found in other studies, was confirmed. Comparison with the results of GerES 2003-2006 confirms a decreasing trend in blood samples observed world-wide. Currently, health-based guidance values for PCB are still exceeded, though to a very limited extent. Also, the widespread occurrence of these compounds underlines the need for further monitoring of these compounds in humans although they are no longer marketed. Quelle: https://www.sciencedirect.com
  • Veröffentlichung
    Phthalate metabolites in urine of children and adolescents in Germany. Human biomonitoring results of the German Environmental Survey GerES V, 2014-2017
    (2020) Conrad, André; Daniels, Anja; Kolossa-Gehring, Marike; Lange, Rosa; Rucic, Enrico; Schmied-Tobies, Maria Irene Hilde; Schulz, Christine; Schwedler, Gerda
    During the population representative German Environmental Survey of Children and Adolescents (GerES V, 2014-2017) 2256 first-morning void urine samples from 3 to 17 years old children and adolescents were analysed for 21 metabolites of 11 different phthalates (di-methyl phthalate (DMP), di-ethyl phthalate (DEP), butylbenzyl phthalate (BBzP), di-iso-butyl phthalate (DiBP), di-n-butyl phthalate (DnBP), di-cyclohexyl phthalate (DCHP), di-n-pentyl phthalate (DnPeP), di-(2-ethylhexyl) phthalate (DEHP), di-iso-nonyl phthalate (DiNP), di-iso-decyl phthalate (DiDP) and di-n-octyl phthalate (DnOP)). Metabolites of DMP, DEP, BBzP, DiBP, DnBP, DEHP, DiNP and DiDP were found in 97-100% of the participants, DCHP and DnPeP in 6%, and DnOP in none of the urine samples. Geometric means (GM) were highest for metabolites of DiBP (MiBP: 26.1 my g/L), DEP (MEP: 25.8 my g/L), DnBP (MnBP: 20.9 my g/L), and DEHP (cx-MEPP: 11.9 my g/L). For all phthalates but DEP, GMs were consistently higher in the 3-5 years old children than in the 14-17 years old adolescents. For DEHP, the age differences were most pronounced. All detectable phthalate biomarker concentrations were positively associated with the levels of the respective phthalate in house dust. In GerES V we found considerably lower phthalate biomarker levels than in the preceding GerES IV (2003-2006). GMs of biomarker levels in GerES V were only 18% (BBzP), 23% (MnBP), 23% (DEHP), 29% (MiBP) and 57% (DiNP) of those measured a decade earlier in GerES IV. However, some children and adolescents still exceeded health-based guidance values in the current GerES V. 0.38% of the participants had levels of DnBP, 0.08% levels of DEHP and 0.007% levels of DiNP which were higher than the respective health-based guidance values. Accordingly, for these persons an impact on health cannot be excluded with sufficient certainty. The ongoing and substantial exposure of vulnerable children and adolescents to many phthalates confirms the need of a continued monitoring of established phthalates, whether regulated or not, as well as of potential substitutes. With this biomonitoring approach we provide a picture of current individual and cumulative exposure developments and body burdens to phthalates, thus providing support for timely and effective chemicals policies and legislation. © 2020 The Authors. Published by Elsevier GmbH.
  • Veröffentlichung
    The methylisothiazolinone and methylchloroisothiazolinone metabolite N-methylmalonamic acid (NMMA) in urine of children and adolescents in Germany - Human biomonitoring results of the German Environmental Survey 2014-2017 (GerES V)
    (2020) Conrad, André; Kolossa-Gehring, Marike; Murawski, Aline; Rucic, Enrico; Schmied-Tobies, Maria Irene Hilde
    Mixtures of methylisothiazolinone and methylchloroisothiazolinone are used as biocides in cosmetics, cleaning agents, and water-based paint. A biomonitoring method to evaluate exposure to these compounds was developed using N-methylmalonamic acid (NMMA), the main metabolite of both, methylisothiazolinone and methylchloroisothiazolinone, as the exposure biomarker. First-morning void urine samples (N = 2078) of 3- to 17-year-old children and adolescents living in Germany were analysed for concentrations of NMMA in the population representative German Environmental Survey for Children and Adolescents GerES V (2014-2017). NMMA was quantified in almost all samples, with a geometric mean concentration of 6.245 My g/L (5.303 my g/gcrea) and a 95th percentile of 15.0 my g/L (12.6 ÎÌg/gcrea). Urinary concentrations could not be related to self-reported application of specific cleaning agents or personal care products, leaving potential, specific sources of exposure unrevealed as most products relevant for isothiazolinone exposure are used ubiquitously. For the first time, reference values can be derived for urinary NMMA for children and adolescents in Germany, facilitating a more substantiated exposure assessment. © 2020 Published by Elsevier GmbH.
  • Veröffentlichung
    Per- and polyfluoroalkyl substances in blood plasma - Results of the German Environmental Survey for children and adolescents 2014-2017 (GerES V)
    (2020) Conrad, André; Duffek, Anja; Kolossa-Gehring, Marike; Lange, Rosa; Rucic, Enrico; Schulte, Christoph; Wellmitz, Jörg
    The 5th cycle of the German Environmental Survey (GerES V) investigated the internal human exposure of children and adolescents aged 3-17 years in Germany to per- and polyfluoroalkyl substances (PFAS). The fieldwork of the population-representative GerES V was performed from 2014 to 2017. In total, 1109 blood plasma samples were analysed for 12 PFAS including perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and perfluorohexane sulfonic acid (PFHxS). PFOS was quantified in all and PFOA in almost all samples, demonstrating ubiquitous exposure. The highest geometric mean concentrations measured were 2.49 ng/mL for PFOS, followed by PFOA (1.12 ng/mL) and PFHxS (0.36 ng/mL), while concentrations of other PFAS were found in much lower concentrations. The 95th percentile levels of PFOS and PFOA were 6.00 and 3.24 ng/mL, respectively. The results document a still considerable exposure of the young generation to the phased out chemicals PFOS and PFOA. The observed exposure levels vary substantially between individuals and might be due to different multiple sources. The relative contribution of various exposure parameters such as diet or the specific use of consumer products need to be further explored. Although additional investigations on the time trend of human exposure are warranted, GerES V underlines the need for an effective and sustainable regulation of PFAS as a whole. Source: © 2020 Elsevier GmbH
  • Veröffentlichung
    Time course of phthalate cumulative risks to male developmental health over a 27-year period: Biomonitoring samples of the German Environmental Specimen Bank
    (2020) Apel, Petra; Kortenkamp, Andreas; Conrad, André; Koch, Holger Martin; Kolossa-Gehring, Marike; Rüther, Maria
    In several human biomonitoring surveys, changes in the usage patterns of phthalates have come to light, but their influence on the risks associated with combined exposures is insufficiently understood. Based on the largest study to date, the 27-year survey of urinary phthalate metabolite levels in 24-hour urine samples from the German Environmental Specimen Bank, we present a deep analysis of changing phthalate exposures on mixture risks. This analysis adopts the Hazard Index (HI) approach based on the five phthalates DBP, DIBP, BBP, DEHP and DINP. Calculations of the hazard index for each study participant included updated phthalate reference doses for anti-androgenicity (RfDAAs) that take account of new evidence of phthalates' developmental toxicity. The Maximum Cumulative Ratio (MCR) approach was used to establish whether a subjectâ€Ìs combined exposure was dominated by one phthalate or was influenced by several phthalates simultaneously. Generally, over the years there was a shift towards lower HIs and higher MCRs, reflecting an increased complexity of the combined exposures. The decade from 1988 to about 1999 was characterised by rather high HIs of between 3 and 7 (95th percentile) which were driven by exposure to DBP and DEHP, often exceeding their single acceptable exposures. Traditional single phthalate risk assessments would have underestimated these risks by up to 50%. From 2006 onwards, no study participant experienced exposures above acceptable levels for a single phthalate, but combined exposures were still in excess of HI = 1. From 2011 onwards most individuals stayed below HI = 1. In interpreting these results, we caution against the use of HI = 1 as an acceptable limit and develop proposals for improved and more realistic mixture risk assessments that take account of co-exposures to other anti-androgenic substances also capable of disrupting the male reproductive system. From this perspective, we regard HIs between 0.1 and 0.2 as more appropriate for evaluating combined phthalate exposures. Assessed against lowered HIs of 0.1 - 0.2, the combined phthalate exposures of most study participants exceeded acceptable levels in all study years, including 2015. Continued monitoring efforts for phthalate combinations are required to provide the basis for appropriate risk management measures. © 2020 The Authors.