Person:
Barthel, Anne-Kathrin

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Forschungsvorhaben
Berufsbeschreibung
Nachname
Barthel
Vorname
Anne-Kathrin
Name

Suchergebnisse

Gerade angezeigt 1 - 3 von 3
  • Veröffentlichung
    Fast identification of microplastics in complex environmental samples by a thermal degradation method
    (2017) Dümichen, Erik; Bannick, Claus Gerhard; Eisentraut, Paul; Barthel, Anne-Kathrin
    In order to determine the relevance of microplastic particles in various environmental media, comprehensive investigations are needed. However, no analytical method exists for fast identification and quantification. At present, optical spectroscopy methods like IR and RAMAN imaging are used. Due to their time consuming procedures and uncertain extrapolation, reliable monitoring is difficult. For analyzing polymers Py-GC-MS is a standard method. However, due to a limited sample amount of about 0.5 mg it is not suited for analysis of complex sample mixtures like environmental samples. Therefore, we developed a new thermoanalytical method as a first step for identifying microplastics in environmental samples. A sample amount of about 20 mg, which assures the homogeneity of the sample, is subjected to complete thermal decomposition. The specific degradation products of the respective polymer are adsorbed on a solid-phase adsorber and subsequently analyzed by thermal desorption gas chromatography mass spectrometry. For certain identification, the specific degradation products for the respective polymer were selected first. Afterwards real environmental samples from the aquatic (three different rivers) and the terrestrial (bio gas plant) systems were screened for microplastics. Mainly polypropylene (PP), polyethylene (PE) and polystyrene (PS) were identified for the samples from the bio gas plant and PE and PS from the rivers. However, this was only the first step and quantification measurements will follow. © 2017 Elsevier Ltd.
  • Veröffentlichung
    Analysis of polyethylene microplastics in environmental samples, using a thermal decomposition method
    (2015) Dümichen, Erik; Bannick, Claus Gerhard; Barthel, Anne-Kathrin; Braun, Ulrike; Brand, Kathrin; Jekel, Martin; Senz, Rainer
    Small polymer particles with a diameter of less than 5 mm called microplastics find their way into the environment from polymer debris and industrial production. Therefore a method is needed to identify and quantify microplastics in various environmental samples to generate reliable concentration values. Such concentration values, i.e. quantitative results, are necessary for an assessment of microplastic in environmental media. This was achieved by thermal extraction in thermogravimetric analysis (TGA), connected to a solid-phase adsorber. These adsorbers were subsequently analysed by thermal desorption gas chromatography mass spectrometry (TDS-GC-MS). In comparison to other chromatographic methods, like pyrolyse gas chromatography mass spectrometry (Py-GC-MS), the relatively high sample masses in TGA (about 200 times higher than used in Py-GC-MS) analysed here enable the measurement of complex matrices that are not homogenous on a small scale. Through the characteristic decomposition products known for every kind of polymer it is possible to identify and even to quantify polymer particles in various matrices. Polyethylene (PE), one of the most important representatives for microplastics, was chosen as an example for identification and quantification.Quelle: http://www.sciencedirect.com
  • Veröffentlichung
    Development of a routine screening method for the microplastic mass content in a wastewater treatment plant effluent
    (2022) Goedecke, Caroline; Eisentraut, Paul; Bannick, Claus Gerhard; Altmann, Korinna; Barthel, Anne-Kathrin; Obermaier, Nathan; Braun, Ulrike; Ricking, Mathias
    An investigation of microplastic (MP) occurrence in a municipal wastewater treatment plant (WWTP) effluent with tertiary treatment was carried out. Representative sample volumes of 1 m3 were taken by applying a fractionated filtration method (500, 100, and 50 (micro)m mesh sizes). The detection of MP mass fractions by thermal extraction desorption-gas chromatography/mass spectrometry (TED-GC/MS) was achieved without the previously required additional sample pretreatment for the first time. Different types of quantification methods for the evaluation of TED-GC/MS data were tested, and their accuracy and feasibility have been proven for real samples. Polyethylene, polystyrene, and polypropylene were identified in effluent samples. The polymer mass content varied significantly between 5 and 50 mg m-3. A correlation between the MP load and the quantity of suspended matter in the WWTP effluents, particle size distribution, particle type, and operation day (i.e., weekday, season, and capacity) was not found. It can be concluded that a meaningful assessment of WWTPs requires a comprehensive sampling campaign with varying operation conditions. © 2022 The Authors