Aufsätze

Dauerhafte URI für die Sammlunghttps://openumwelt.de/handle/123456789/6

Listen

Suchergebnisse

Gerade angezeigt 1 - 6 von 6
  • Veröffentlichung
    Metadata describing the Kharaa Yeröö River Basin Water Quality Database
    (2018) Hofmann, Jürgen; Ibisch, Ralf; Karthe, Daniel; Schweitzer, Christian
    In the framework of the BMBF funded project on Integrated Water Resources Management in Central Asia (Model region Mongolia, MOMO project, www.iwrm-momo.de) the objectives focused on supplementing, validating and extending the existing surveillance monitoring to the entire river basin for the time series 2006-2017. The MOMO monitoring programme was set up in order to observe seasonal variation in various water quality parameters along the main river course and its tributaries. A detailed sampling survey was carried out along the Kharaa River in the spring, summer and autumn of 2006 to 2017, extending from the headwaters in the Khentii Mountains to the outlet of the river basin. An additional continuous monthly monitoring programme for surface water quality was carried out upstream (Deed Guur) and downstream of Darkhan city (Buren Tolgoi) including the outlet of WWTP Darkhan in the time between 2007 and 2017. This strategy provides information for the efficient and effective design of future monitoring programmes with a focus on operational or investigative issues. The types of water sampling programmes included initial surveys as well as investigative and operational monitoring, point-source characterization, intensive surveys, fixed-station-network monitoring, groundwater monitoring, and special surveys involving chemical and biological monitoring. The water analyses have a focus on nutrients, heavy metals and metalloids, chloride, boron and the main physical water parameters. The dataset comprises also fluvial sediment analyses on heavy metals. In addition in 2017 a special hygienic monitoring (total coliforms, E. coli and fecal coliforms) has been carried out and was included in this database.
  • Veröffentlichung
    A call for urgent action to safeguard our planet and our health in line with the helsinki declaration
    (2021) Halonen, Jaana I.; Erhola, Marina; Furman, Eeva; Kolossa-Gehring, Marike
    In 2015, the Rockefeller Foundation-Lancet Commission launched a report introducing a novel approach called Planetary Health and proposed a concept, a strategy and a course of action. To discuss the concept of Planetary Health in the context of Europe, a conference entitled: "Europe That Protects: Safeguarding Our Planet, Safeguarding Our Health" was held in Helsinki in December 2019. The conference participants concluded with a need for action to support Planetary Health during the 2020s. The Helsinki Declaration emphasizes the urgency to act as scientific evidence shows that human activities are causing climate change, biodiversity loss, land degradation, overuse of natural resources and pollution. They threaten the health and safety of human kind. Global, regional, national, local and individual initiatives are called for and multidisciplinary and multisectorial actions and measures are needed. A framework for an action plan is suggested that can be modified for local needs. Accordingly, a shift from fragmented approaches to policy and practice towards systematic actions will promote human health and health of the planet. Systems thinking will feed into conserving nature and biodiversity, and into halting climate change. The Planetary Health paradigm - the health of human civilization and the state of natural systems on which it depends - must become the driver for all policies. Quelle: © Elsevier 2021
  • Vorschaubild
    Veröffentlichung
    Management kurzzeitiger Verschmutzungen an Flussbadegewässern
    (2022) Schmidt, Alexandra; Seis, Wolfgang; Selinka, Hans-Christoph
    Flüsse sind komplexe ökologische Systeme, die eine unterschiedliche Nutzung erfahren. Einerseits bilden sie den Lebensraum vieler Tier- und Pflanzenarten, andererseits gehören sie zu den wichtigsten ökonomischen und infrastrukturellen Einheiten. An Fließgewässer werden somit unterschiedliche Nutzungsansprüche gestellt - mit entsprechenden Auswirkungen. Badegewässer an Flüssen einzurichten und zu managen, stellt daher in mehrfacher Hinsicht eine Herausforderung dar. Strömungen und die Schifffahrt bergen physische Risiken für das Baden im Fluss. Zudem müssen Vorsorgemaßnahmen ergriffen werden, um die Gesundheit der Badenden auch bei einer stark schwankenden hygienischen Wasserqualität zu schützen. Die daraus resultierenden Bemühungen, um ein sicheres Baden in Fließgewässern zu gewährleisten, können sich aber insbesondere für Städte und Metropolregionen lohnen, in denen Seen und Talsperren kaum vorhanden sind oder sich diese nur mit erhöhtem Aufwand für die Bevölkerung erreichen lassen. Vor diesem Hintergrund entstand aus dem BMBFgeförderten Projekt FLUSSHYGIENE (2017-020) nicht nur ein unterstützender thematischer Leitfaden, sondern es konnte im Zuge dessen auch ein Frühwarnsystem an fünf Berliner Flussbadegewässern erfolgreich eingerichtet und betrieben werden. Quelle: UMID : Umwelt und Mensch - Informationsdienst ; Umwelt & Gesundheit, Umweltmedizin, Verbraucherschutz / Boden- und Lufthygiene (Berlin) Institut für Wasser- - (2022), Heft 02, Seite 33
  • Veröffentlichung
    The role of natural science collections in the biomonitoring of environmental contaminants in apex predators in support of the EU's zero pollution ambition
    (2022) Movalli, Paola; Koschorreck, Jan; Treu, Gabriele; Claßen, Daniela
    The chemical industry is the leading sector in the EU in terms of added value. However, contaminants pose a major threat and significant costs to the environment and human health. While EU legislation and international conventions aim to reduce this threat, regulators struggle to assess and manage chemical risks, given the vast number of substances involved and the lack of data on exposure and hazards. The European Green Deal sets a "zero pollution ambition for a toxic free environment" by 2050 and the EU Chemicals Strategy calls for increased monitoring of chemicals in the environment. Monitoring of contaminants in biota can, inter alia: provide regulators with early warning of bioaccumulation problems with chemicals of emerging concern; trigger risk assessment of persistent, bioaccumulative and toxic substances; enable risk assessment of chemical mixtures in biota; enable risk assessment of mixtures; and enable assessment of the effectiveness of risk management measures and of chemicals regulations overall. A number of these purposes are to be addressed under the recently launched European Partnership for Risk Assessment of Chemicals (PARC). Apex predators are of particular value to biomonitoring. Securing sufficient data at European scale implies large-scale, long-term monitoring and a steady supply of large numbers of fresh apex predator tissue samples from across Europe. Natural science collections are very well-placed to supply these. Pan-European monitoring requires effective coordination among field organisations, collections and analytical laboratories for the flow of required specimens, processing and storage of specimens and tissue samples, contaminant analyses delivering pan-European data sets, and provision of specimen and population contextual data. Collections are well-placed to coordinate this. The COST Action European Raptor Biomonitoring Facility provides a well-developed model showing how this can work, integrating a European Raptor Biomonitoring Scheme, Specimen Bank and Sampling Programme. Simultaneously, the EU-funded LIFE APEX has demonstrated a range of regulatory applications using cutting-edge analytical techniques. PARC plans to make best use of such sampling and biomonitoring programmes. Collections are poised to play a critical role in supporting PARC objectives and thereby contribute to delivery of the EU's zero-pollution ambition. © The Author(s) 2022
  • Veröffentlichung
    HBM4EU results support the Chemicals' Strategy for Sustainability and the Zero-Pollution Action Plan
    (2023) Vicente, Joana Lobo; David, Madlen; Ganzleben, Catherine; Gasol, Roser; Gerofke, Antje; Kolossa-Gehring, Marike
    One of the major goals of the European Human Biomonitoring Initiative (HBM4EU) was to bridge the gap between science and policy by consulting both policy makers and national scientists and generating evidence of the actual exposure of residents to chemicals and whether that exposure would be suggest a potential health risk. Residents' perspectives on chemical exposure and risk were also investigated. HBM4EU's research was designed to answer specific short-term and long-term policy questions at national and European levels, and for its results to directly support regulatory action on chemicals. A strategy was established to prioritise chemicals for analysis in human matrices, with a total of 18 substances/substance groups chosen to be investigated throughout the five-and a -half-year project. HBM4EU produced new evidence of human exposure levels, developed reference values for exposure, investigated determinants of exposure and derived health-based guidance values for those substances. In addition, HBM4EU promoted the use of human biomonitoring data in chemical risk assessment and developed innovative tools and methods linking chemicals to possible health impacts, such as effect biomarkers. Furthermore, HBM4EU advanced understand of effects from combined exposures and methods to identify emerging chemicals. With the aim of supporting policy implementation, science-to-policy workshops were organised, providing opportunities for joint reflection and dialogue on research results. I, and indicators were developed to assess temporal and spatial patterns in the exposure of European population. A sustainable human biomonitoring monitoring framework, producing comparable quality assured data would allow: the evaluation of time trends; the exploration of spatial trends: the evaluation of the influence of socio-economic conditions on chemical exposure. Therefore, such a framework should be included in the European Chemicals' Strategy for Sustainability and the data would support the Zero Pollution Action Plan. © 2023 The Authors
  • Veröffentlichung
    Berlin statement on legacy and emerging contaminants in polar regions
    (2023) Ebinghaus, Ralf; Barbaro, Elena; Nash, Susan Bengtson; Herata, Heike; Koschorreck, Jan; Küster, Anette; Rauert, Caren
    Polar regions should be given greater consideration with respect to the monitoring, risk assessment, and management of potentially harmful chemicals, consistent with requirements of the precautionary principle. Protecting the vulnerable polar environments requires (i) raising political and public awareness and (ii) restricting and preventing global emissions of harmful chemicals at their sources. The Berlin Statement is the outcome of an international workshop with representatives of the European Commission, the Arctic Council, the Antarctic Treaty Consultative Meeting, the Stockholm Convention on Persistent Organic Pollutants (POPs), environmental specimen banks, and data centers, as well as scientists from various international research institutions. The statement addresses urgent chemical pollution issues in the polar regions and provides recommendations for improving screening, monitoring, risk assessment, research cooperation, and open data sharing to provide environmental policy makers and chemicals management decision-makers with relevant and reliable contaminant data to better protect the polar environments. The consensus reached at the workshop can be summarized in just two words: "Act now!" Specifically, "Act now!" to reduce the presence and impact of anthropogenic chemical pollution in polar regions by. -Establishing participatory co-development frameworks in a permanent multi-disciplinary platform for Arctic-Antarctic collaborations and establishing exchanges between the Arctic Monitoring and Assessment Program (AMAP) of the Arctic Council and the Antarctic Monitoring and Assessment Program (AnMAP) of the Scientific Committee on Antarctic Research (SCAR) to increase the visibility and exchange of contaminant data and to support the development of harmonized monitoring programs. -Integrating environmental specimen banking, innovative screening approaches and archiving systems, to provide opportunities for improved assessment of contaminants to protect polar regions. © 2023 The Authors