Aufsätze

Dauerhafte URI für die Sammlunghttps://openumwelt.de/handle/123456789/6

Listen

Suchergebnisse

Gerade angezeigt 1 - 2 von 2
  • Veröffentlichung
    Colonisation of secondary habitats in mining sites by Labidura riparia (Dermaptera: Labiduridae) from multiple natural source populations
    (2021) Wiegleb, Gerhard; Güth, Mareike; Durka, Walter
    Abstract Background Open cast lignite mines, sand pits and military training areas represent human-made, secondary habitats for specialized xerothermophilous and psammophilous species. Rare species, including the earwig Labidura riparia, are found in high population densities in such sites. However, it is unknown from which sources colonisation took place and how genetic variation compares to that of ancient populations on natural sites. Methods Using nine microsatellite markers, we analysed genetic variation and population structure of L. riparia in 21 populations in NE Germany both from secondary habitats such as lignite-mining sites, military training areas and a potassium mining heap, and rare primary habitats, such as coastal and inland dunes. Results Genetic variation was higher in populations from post-mining sites and former military training areas than in populations from coastal or inland dune sites. Overall population diferentiation was substantial (FST=0.08; F'ST=0.253), with stronger diferentiation among primary (FST=0.196; F'ST=0.473) than among secondary habitats (FST=0.043; F'ST=0.147). Diferentiation followed a pattern of isolation by distance. Bayesian structure analysis revealed three gene pools representing primary habitats on a coastal dune and two diferent inland dunes. All populations from secondary habitats were mixtures of the two inland dune gene pools, suggesting multiple colonization of post-mining areas from diferent source populations and hybridisation among source populations. Discussion Populations of L. riparia from primary habitats deserve special conservation, because they harbour diferentiated gene pools. The majority of the L. riparia populations, however, thrive in secondary habitats, highlighting their role for conservation. Implications for insect conservation A dual strategy should be followed of conserving both remaining natural habitat harbouring particular intraspecific gene pools and secondary habitat inhabited by large admixed and genetically highly variable populations. © The Author(s) 2021
  • Veröffentlichung
    Beyond fish eDNA metabarcoding: Field replicates disproportionately improve the detection of stream associated vertebrate species
    (2021) Macher, Till-Hendrik; Arle, Jens; Schütz, Robin; Koschorreck, Jan
    Fast, reliable, and comprehensive biodiversity monitoring data are needed for environmental decision making and management. Recent work on fish environmental DNA (eDNA) metabarcoding shows that aquatic diversity can be captured fast, reliably, and non-invasively at moderate costs. Because water in a catchment flows to the lowest point in the landscape, often a stream, it can collect traces of terrestrial species via surface or subsurface runoff along its way or when specimens come into direct contact with water (e.g., when drinking). Thus, fish eDNA metabarcoding data can provide information on fish but also on other vertebrate species that live in riparian habitats. This additional data may offer a much more comprehensive approach for assessing vertebrate diversity at no additional costs. Studies on how the sampling strategy affects species detection especially of stream-associated communities, however, are scarce. We therefore performed an analysis on the effects of biological replication on both fish as well as (semi-)terrestrial species detection. Along a 2 km stretch of the river Mulde (Germany), we collected 18 1-L water samples and analyzed the relation of detected species richness and quantity of biological replicates taken. We detected 58 vertebrate species, of which 25 were fish and lamprey, 18 mammals, and 15 birds, which account for 50%, 22.2%, and 7.4% of all native species to the German federal state of Saxony-Anhalt. However, while increasing the number of biological replicates resulted in only 24.8% more detected fish and lamprey species, mammal, and bird species richness increased disproportionately by 68.9% and 77.3%, respectively. Contrary, PCR replicates showed little stochasticity. We thus emphasize to increase the number of biological replicates when the aim is to improve general species detections. This holds especially true when the focus is on rare aquatic taxa or on (semi-)terrestrial species, the so-called 'bycatch'. As a clear advantage, this information can be obtained without any additional sampling or laboratory effort when the sampling strategy is chosen carefully. With the increased use of eDNA metabarcoding as part of national fish bioassessment and monitoring programs, the complimentary information provided on bycatch can be used for biodiversity monitoring and conservation on a much broader scale. © 2021 Author(s)