Aufsätze

Dauerhafte URI für die Sammlunghttps://openumwelt.de/handle/123456789/6

Listen

Suchergebnisse

Gerade angezeigt 1 - 7 von 7
  • Veröffentlichung
    Levels and predictors of urinary nickel concentrations of children in Germany: Results from the German Environmental Survey on children (GerES IV)
    (2013)
    Human biomonitoring of nickel has gained interest in environmental medicine due to its wide distribution in the environment and its allergenic potential. There are indications that the prevalence of nickel sensitization in children is increased by nickel exposure and that oral uptake of nickel can exacerbate nickel dermatitis in nickel-sensitive individuals. Urinary nickel measurement is a good indicator of exposure. However, data on nickel levels in urine of children are rare. For the first time, the German Environmental Survey on children (GerES IV) 2003-2006 provided representative data to describe the internal nickel exposure of children aged 3-14 years in Germany. Nickel was measured after enrichment in the organic phase of urine by graphite furnace atomic absorption spectrometry with Zeeman background correction. Nickel levels (n = 1576) ranged from <0.5 to 15 ĆÊg/l. Geometric mean was 1.26 ĆÊg/l. Multivariate regression analysis showed that gender, age, socio-economic status, being overweighted, consumption of hazelnut spread, nuts, cereals, chocolate and urinary creatinine were significant predictors for urinary nickel excretion of children who do not smoke. 20.2% of the variance could be explained by these variables. With a contribution of 13.8% the urinary creatinine concentration was the most important predictor. No influence of nickel intake via drinking water and second hand smoke exposure was observed.Copyright ©2012 Published by Elsevier GmbH.
  • Veröffentlichung
    Hair mercury and urinary cadmium levels in Belgian children and their mothers within the framework of the COPHES/DEMOCOPHES projects
    (2014)
    A harmonized human biomonitoring pilot study was set up within the frame of the European projects DEMOCOPHES and COPHES. In 17 European countries, biomarkers of some environmental pollutants, including urinary cadmium and hair mercury, were measured in children and their mothers in order to obtain European-wide comparison values on these chemicals. The Belgian participant population consisted in 129 school children (6-11 years) and their mothers (= 45 years) living in urban or rural areas of Belgium.

    The geometric mean levels for mercury in hair were 0.383 ìg/g and 0.204 ìg/g for respectively mothers and children. Cadmium in mother's and children's urine was detected at a geometric mean concentration of respectively 0.21 and 0.04 ìg/l. For both biomarkers, levels measured in the mothers and their child were correlated. While the urinary cadmium levels increased with age, no trend was found for hair mercury content, except the fact that mothers hold higher levels than children. The hair mercury content increased significantly with the number of dental amalgam fillings, explaining partially the higher levels in the mothers by their higher presence rate of these amalgams compared to children. Fish or seafood consumption was the other main parameter determining the mercury levels in hair. No relationship was found between smoking status and cadmium or mercury levels, but the studied population included very few smokers. Urinary cadmium levels were higher in both mothers and children living in urban areas, while for mercury this difference was only significant for children. Our small population showed urinary cadmium and hair mercury levels lower than the health based guidelines suggested by the WHO or the JECFA (Joint FAO/WHO Expert Committee on Food Additives). Only 1% had cadmium level slightly higher than the German HBM-I value (1 ìg/l for adults), and 9% exceeded the 1 ìg mercury/g hair suggested by the US EPA.
    Quelle: http://www.sciencedirect.com/

  • Veröffentlichung
    The European COPHES/DEMOCOPHES project
    (2014)
    COPHES/DEMOCOPHES has its origins in the European Environment and Health Action Plan of 2004 to "develop a coherent approach on human biomonitoring (HBM) in EuropeŁ. Within this twin-project it was targeted to collect specimens from 120 mother-child-pairs in each of the 17 participating European countries. These specimens were investigated for six biomarkers (mercury in hair; creatinine, cotinine, cadmium, phthalate metabolites and bisphenol A in urine). The results for mercury in hair are described in a separate paper. Each participating member state was requested to contract laboratories, for capacity building reasons ideally within its borders, carrying out the chemical analyses. To ensure comparability of analytical data a Quality Assurance Unit (QAU) was established which provided the participating laboratories with standard operating procedures (SOP) and with control material. This material was specially prepared from native, non-spiked, pooled urine samples and was tested for homogeneity and stability. Four external quality assessment exercises were carried out. Highly esteemed laboratories from all over the world served as reference laboratories. Web conferences after each external quality assessment exercise functioned as a new and effective tool to improve analytical performance, to build capacity and to educate less experienced laboratories. Of the 38 laboratories participating in the quality assurance exercises 14 laboratories qualified for cadmium, 14 for creatinine, 9 for cotinine, 7 for phthalate metabolites and 5 for bisphenol A in urine. In the last of the four external quality assessment exercises the laboratories that qualified for DEMOCOPHES performed the determinations in urine with relative standard deviations (low/high concentration) of 18.0/2.1% for cotinine, 14.8/5.1% for cadmium, 4.7/3.4% for creatinine. Relative standard deviations for the newly emerging biomarkers were higher, with values between 13.5 and 20.5% for bisphenol A and between 18.9 and 45.3% for the phthalate metabolites. Plausibility control of the HBM results of all participating countries disclosed analytical shortcomings in the determination of Cd when using certain ICP/MS methods. Results were corrected by reanalyses. The COPHES/DEMOCOPHES project for the first time succeeded in performing a harmonized pan-European HBM project. All data raised have to be regarded as utmost reliable according to the highest international state of the art, since highly renowned laboratories functioned as reference laboratories. The procedure described here, that has shown its success, can be used as a blueprint for future transnational, multicentre HBM projects.
    Quelle: http://www.sciencedirect.com/
  • Veröffentlichung
    Phthalate metabolites in 24-h urine samples of the German Environmental Specimen Bank (ESB) from 1988 to 2015 and a comparison with US NHANES data from 1999 to 2012
    (2017) Koch, Holger M.; Apel, Petra; Schütze, Andre; Conrad, André; Pälmke, Claudia; Kolossa-Gehring, Marike; Brüning, Thomas; Rüther, Maria
    The German Environmental Specimen Bank (ESB) continuously collects 24-h urine samples since theearly 1980s in Germany. In this study we analyzed 300 urine samples from the years 2007 to 2015 for 21phthalate metabolites (representing exposure to 11 parent phthalates) and combined the data with twoprevious retrospective measurement campaigns (1988 to 2003 and 2002 to 2008). The combined datasetcomprised 1162 24-h urine samples spanning the years 1988 to 2015. With this detailed set of humanbiomonitoring data we describe the time course of phthalate exposure in Germany over a time frame of27 years. For the metabolites of the endocrine disrupting phthalates di(2-ethylhexyl) phthalate (DEHP),di-n-butyl phthalate (DnBP) and butylbenzyl phthalate (BBzP) we observed a roughly ten-fold decline inmedian metabolite levels from their peak levels in the late 1980s/early 1990s compared to most recentlevels from 2015. Probably, bans (first enacted in 1999) and classifications/labelings (enacted in 2001 and2004) in the European Union lead to this drop. A decline in di-isobutyl phthalate (DiBP) metabolite levelsset in only quite recently, possibly due to its later classification as a reproductive toxicant in the EU in 2009.In a considerable number of samples collected before 2002 health based guidance values (BE, HBM I) havebeen exceeded for DnBP (27.2%) and DEHP (2.3%) but also in recent samples some individual exceedancescan still be observed (DEHP 1.0%). A decrease in concentration for all low molecular weight phthalates,labelled or not, was seen in the most recent years of sampling. For the high molecular weight phthalates,DEHP seems to have been substituted in part by di-isononyl phthalate (DiNP), but DiNP metabolite levelshave also been declining in the last years. Probably, non-phthalate alternatives increasingly take overfor the phthalates in Germany. A comparison with NHANES (National Health and Nutrition ExaminationSurvey) data from the United States covering the years 1999 to 2012 revealed both similarities anddifferences in phthalate exposure between Germany and the US. Exposure to critical phthalates hasdecreased in both countries with metabolite levels more and more aligning with each other, but highmolecular weight phthalates substituting DEHP (such as DiNP) seem to become more important in theUS than in Germany.
    © 2016 Elsevier GmbH. All rights reserved
  • Veröffentlichung
    Glyphosate in German adults - Time trend (2001 to 2015) of human exposure to a widely used herbicide
    (2017) Conrad, André; Schröter-Kermani, Christa; Hoppe, Hans-Wolfgang; Kolossa-Gehring, Marike; Pieper, Silvia; Rüther, Maria
  • Veröffentlichung
    Time trend of exposure to the phthalate plasticizer substitute DINCH in Germany from 1999 to 2017: Biomonitoring data on young adults from the Environmental Specimen Bank (ESB)
    (2019) Kasper-Sonnenberg, Monika; Apel, Petra; Koch, Holger M.; Kolossa-Gehring, Marike; Rüther, Maria
    DINCH (cyclohexane-1,2-dicarboxylic acid-diisononyl ester) is a phthalate plasticizer substitute introduced into the market in 2002. It is increasingly used especially in the production of toys, food contact materials and medical devices. In this measurement campaign on 24-h urine samples of young adults (20-29 years) from the German Environmental Specimen Bank (ESB) collected in 2010, 2011, 2013, 2015 and 2017 (in total 300 samples, 60 samples/year) we analyzed three specific, oxidized DINCH metabolites (OH-MINCH: cyclohexane-1,2-dicarboxylic acid-mono(hydroxy-isononyl) ester; cx-MINCH: cyclohexane-1,2-dicarboxylic acid-mono(carboxy-isooctyl) ester, oxo-MINCH: cyclohexane-1,2-dicarboxylic acid-mono(oxo-isononyl) ester). We merged these data with earlier data of the ESB from the years 1999-2012 and are now able to report levels and time trends of internal DINCH exposure from 1999 to 2017. After first detections of the major oxidized DINCH metabolite OH-MINCH in 2006 (6.7%) detection rates rapidly increased to 43.3% in 2009, 80% in 2010 and 98.3% in 2011 and 2012. From the year 2013 on we could detect OH-MINCH in every urine sample analyzed. The median concentrations of OH-MINCH rapidly increased from 0.15 (Mü)g/L in 2010 to twice the concentration in 2011 (0.31 (Mü)g/L) with further increases in 2013 (0.37 (Mü)g/L), 2015 (0.59 (Mü)g/L) and 2017 (0.70 (Mü)g/L). Similar increases, albeit at lower detection rates and concentration levels, could be observed for cx-MINCH and oxo-MINCH. All metabolites strongly correlate with each other. For the ESB study population, DINCH exposures are still far below health based guidance values such as the German Human Biomonitoring Value (HBM-I; 4,500 (Mü)g/L for the sum of OH-MINCH and cx-MINCH) or the tolerable daily intake (TDI) of EFSA (1mg/kg/bw/d). The median daily DINCH intake (DI) calculated for 2017 was 0.23 (Mü)g/kg bw/d, thus 4,310-times lower than the TDI. The maximum DI calculated for one individual in 2012 (42.60 (Mü)g/kg bw/d) was a factor of more than 20 below the TDI. The ongoing increase in DINCH exposure needs to be closely monitored in the future, including populations with potentially higher exposures such as children. This close monitoring will enable timely exposure and risk reduction measures if exposures reached critical levels, or if new toxicological data lead to lower health based guidance values. DINCH belongs to the European Human Biomonitoring Initiative (HBM4EU) priority substances for which policy relevant questions still have to be answered. © 2019 Elsevier GmbH. All rights reserved.
  • Veröffentlichung
    Sensitive and selective quantification of glyphosate and aminomethylphosphonic acid (AMPA) in urine of the general population by gas chromatography-tandem mass spectrometry
    (2020) Connolly, Alison; Koslitz, Stephan; Bury, Daniel; Conrad, André; Kolossa-Gehring, Marike
    Glyphosate is the highest volume herbicide used worldwide, and its main biodegradation product is aminomethylphosphonic acid (AMPA), both are listed as priority substances in the Human Biomonitoring for Europe (HBM4EU) initiative which aims at improving policy by filling knowledge gaps by targeted research. The objective of the current study was to advance the sensitivity of an existing gas chromatography-tandem mass spectrometry analytical method to measure environmental population exposures. A 50% lower limit of quantification of 0.05 (my)g/L was achieved for both analytes by slight modifications in sample work-up, and use of another isotope labelled internal standard. In a pilot study, 41 urine samples from the general German population were analysed, of which glyphosate and AMPA could be quantified in 66% and 90% of the samples respectively, which is sufficient to reliably describe distributions of urinary concentrations in the non-occupationally exposed population. © 2020 The Authors