Listen
4 Ergebnisse
Filter
Einstellungen
Suchergebnisse
Veröffentlichung Integrated analysis of climate change, land-use, energy and water strategies(2013)Land, energy and water are our most precious resources, but the manner and extent to which they are exploited contributes to climate change. Meanwhile, the systems that provide these resources are themselves highly vulnerable to changes in climate. Efficient resource management is therefore of great importance, both for mitigation and for adaptation purposes. We postulate that the lack of integration in resource assessments and policy-making leads to inconsistent strategies and inefficient use of resources. We present CLEWs (climate, land-use, energy and water strategies), a new paradigm for resource assessments that we believe can help to remedy some of these shortcomings.
Quelle: http://www.nature.comVeröffentlichung Good intentions, big footprints: Facing household energy use in rich countries(2016) Moser, Stephanie; Bilharz, Michael; Kleinhückelkotten, Silke; Neitzke, H.-PeterVeröffentlichung Public health impacts of city policies to reduce climate change: findings from the URGENCHE EU-China project(2016) Sabel, Clive E.; Hiscock, Rosemary; Asikainen, Arja; Tobollik, MyriamBackground: Climate change is a global threat to health and wellbeing. Here we provide findings of an international research project investigating the health and wellbeing impacts of policies to reduce greenhouse gas emissions in urban environments. Methods: Five European and two Chinese city authorities and partner academic organisations formed the project consortium. The methodology involved modelling the impact of adopted urban climate-change mitigation transport, buildings and energy policy scenarios, usually for the year 2020 and comparing them with business as usual (BAU) scenarios (where policies had not been adopted). Carbon dioxide emissions, health impacting exposures (air pollution, noise and physical activity), health (cardiovascular, respiratory, cancer and leukaemia) and wellbeing (including noise related wellbeing, overall wellbeing, economic wellbeing and inequalities) were modelled. The scenarios were developed from corresponding known levels in 2010 and pre-existing exposure response functions. Additionally there were literature reviews, three longitudinal observational studies and two cross sectional surveys. Results: There are four key findings. Firstly introduction of electric cars may confer some small health benefits but it would be unwise for a city to invest in electric vehicles unless their power generation fuel mix generates fewer emissions than petrol and diesel. Second, adopting policies to reduce private car use may have benefits for carbon dioxide reduction and positive health impacts through reduced noise and increased physical activity. Third, the benefits of carbon dioxide reduction from increasing housing efficiency are likely to be minor and co-benefits for health and wellbeing are dependent on good air exchange. Fourthly, although heating dwellings by in-home biomass burning may reduce carbon dioxide emissions, consequences for health and wellbeing were negative with the technology in use in the cities studied. Conclusions: The climate-change reduction policies reduced CO2 emissions (the most common greenhouse gas) from cities but impact on global emissions of CO2 would be more limited due to some displacement of emissions. The health and wellbeing impacts varied and were often limited reflecting existing relatively high quality of life and environmental standards in most of the participating cities; the greatest potential for future health benefit occurs in less developed or developing countries. Quelle: www.ehjournal.biomedcentral.comVeröffentlichung National nitrogen budget for Germany(2021) Häußermann, Uwe; Bach, Martin; Fuchs, Stephan; Geupel, MarkusEmissions of reactive nitrogen (Nr) give rise to a wide range of environmental problems. Nitrogen budgets for various systems and on different scales are an established tool to quantify the sources and fate of Nr. The national nitrogen budget (NNB) for Germany calculates the nitrogen flows for eight pools: Atmosphere, Energy and Fuels, Material and Products in Industry, Humans and Settlements, Agriculture, Forest and Semi-natural Vegetation, Waste, and Hydrosphere, as well as for the transboundary N-flows. In Germany, in total 6,275 kt Nr a-1 has been introduced into the nitrogen cycle annually (mean 2010 to 2014), of which 43% stem from ammonia synthesis. Domestic extraction and import of nitrogenous fossil fuels (lignite, coal, crude oil) releases another 2,335 kt Nr a-1. Import of food, feed and materials contributes 745 kt Nr a-1, while biological N fixation converts 308 kt Nr a-1 into organically bound nitrogen. In terms of Nr sinks, the combustion and denoxing of fuels and the refining of crude oil converts 2,594 kt Nr a-1 to N2. In waters, soils, and wastewater treatment plants, denitrification leads to the release of 1,107 kt Nr a-1 as N2. Via the atmosphere and hydrosphere, Germany exports 755 kt Nr a-1 to neighbouring countries and into coastal waters. On balance, Germany releases 1,627 kt Nr a-1 annually to the environment. However, the NNB as a whole and the individual pool balances involve substantial uncertainties, which have to be considered when interpreting the results. ©2021 The Author(s)