Listen
6 Ergebnisse
Filter
Einstellungen
Suchergebnisse
Veröffentlichung Biodegradability and transformation of human pharmaceutical active ingredients in environmentally relevant test systems(2013) Berkner, Silvia; Thierbach, ClaudiaHuman pharmaceutical active ingredients that are orally or parenterally administered may be metabolised in the body and after excretion may be further transformed in the receiving environmental compartments. The optimal outcome from an environmental point of view-complete mineralisation-is rarely observed. Small molecule pharmaceuticals are commonly not readily biodegradable according to Organisation for Economic Cooperation and Development (OECD) 301 tests. However, primary transformation is often observed. To gain information on the transformation of active ingredients in the environment, long-term studies like transformation in aquatic water/sediment systems according to OECD guideline 308 are required for the environmental risk assessment for human active pharmaceutical ingredients. Studies received until mid 2010 as part of the dossiers for marketing authorisation applications were evaluated concerning transformation products. The evaluation revealed that in 70 % of the studies, at least one transformation product (TP) is formed above 10 % of the originally applied dose, but in only 26 % of the studies are all TP identified. The evaluation also revealed that some TP of pharmaceutical active ingredients show a considerably longer DT50 compared to the parent compound. An example is the TP (val)sartan acid that is formed from an antihypertensive compound.
Quelle: http://link.springer.comVeröffentlichung Effects of predation and dispersal on bacterial abundance and contaminant biodegradation(2017) Harms, Hauke; Otto, Sally; Wick, Lukas Y.Veröffentlichung Comparison of software tools for kinetic evaluation of chemical degradation data(2018) Ranke, Johannes; Meinecke, Stefan; Wöltjen, JaninaBackground For evaluating the fate of xenobiotics in the environment, a variety of degradation or environmental metabolism experiments are routinely conducted. The data generated in such experiments are evaluated by optimizing the parameters of kinetic models in a way that the model simulation fits the data. No comparison of the main software tools currently in use has been published to date. This article shows a comparison of numerical results as well as an overall, somewhat subjective comparison based on a scoring system using a set of criteria. The scoring was separately performed for two types of uses. Uses of type I are routine evaluations involving standard kinetic models and up to three metabolites in a single compartment. Evaluations involving non-standard model components, more than three metabolites or more than a single compartment belong to use type II. For use type I, usability is most important, while the flexibility of the model definition is most important for use type II. Results Test datasets were assembled that can be used to compare the numerical results for different software tools. These datasets can also be used to ensure that no unintended or erroneous behaviour is introduced in newer versions. In the comparison of numerical results, good agreement between the parameter estimates was observed for datasets with up to three metabolites. For the now unmaintained reference software DegKinManager/ModelMaker, and for OpenModel which is still under development, user options were identified that should be taken care of in order to obtain results that are as reliable as possible. Based on the scoring system mentioned above, the software tools gmkin, KinGUII and CAKE received the best scores for use type I. Out of the 15 software packages compared with respect to use type II, again gmkin and KinGUII were the first two, followed by the script based tool mkin, which is the technical basis for gmkin, and by OpenModel. Conclusions Based on the evaluation using the system of criteria mentioned above and the comparison of numerical results for the suite of test datasets, the software tools gmkin, KinGUII and CAKE are recommended for use type I, and gmkin and KinGUII for use type II. For users that prefer to work with scripts instead of graphical user interfaces, mkin is recommended. For future software evaluations, it is recommended to include a measure for the total time that a typical user needs for a kinetic evaluation into the scoring scheme. It is the hope of the authors that the publication of test data, source code and overall rankings foster the evolution of useful and reliable software in the field. © The Author(s) 2018Veröffentlichung Varying attenuation of trace organic chemicals in natural treatment - a review of key influential factors(2021) Filter, Josefine; Zhiteneva, Veronika; Ruhl, Aki Sebastian; Vick, CarstenThe removal of trace organic chemicals (TOrCs) from treated wastewater and impacted surface water through managed aquifer recharge (MAR) has been extensively studied under a variety of water quality and operating conditions and at various experimental scales. The primary mechanism thought to dictate removal over the long term is biodegradation by microorganisms present in the system. This review of removal percentages observed in biologically active filtration systems reported in the peer-reviewed literature may serve as the basis to identify future indicators for persistence, as well as variable and efficient removal in MAR systems. A noticeable variation in reported removal percentages (standard deviation above 30%) was observed for 24 of the 49 most commonly studied TOrCs. Such variations suggest a rather inconsistent capacity of biologically active filter systems to remove these TOrCs. Therefore, operational parameters such as the change in dissolved organic carbon ((Delta)DOC) during treatment, hydraulic retention time (HRT), filter material, and redox conditions were correlated to the associated TOrC removal percentages to determine whether a data-based relationship could be elucidated. Interestingly, 11 out of the 24 compounds demonstrated increased removal with increasing (Delta)DOC concentrations. Furthermore, 10 compounds exhibited a positive correlation with HRT. Based on the evaluated data, a minimum HRT of 0.5-1 day is recommended for removal of most compounds. © 2021 Elsevier Ltd.Veröffentlichung The fate of nitrification and urease inhibitors in simulated bank filtration(2023) Förster, Christina; Scheurer, Marco; Klitzke, Sondra; Ruhl, Aki Sebastian; Zeeshan, MuhammadThe application of nitrification and urease inhibitors (NUI) in conjunction with nitrogen (N) fertilizers improves the efficiency of N fertilizers. However, NUI are frequently found in surface waters through leaching or surface runoff. Bank filtration (BF) is considered as a low-cost water treatment system providing high quality water by efficiently removing large amounts of organic micropollutants from surface water. The fate of NUI in managed aquifer recharge systems such as BF is poorly known. The aim of this work was to investigate sorption and degradation of NUI in simulated BF under near-natural conditions. Besides, the effect of NUI on the microbial biomass of slowly growing microorganisms and the role of microbial biomass on NUI removal was investigated. Duplicate sand columns (length 1.7 m) fed with surface water were spiked with a pulse consisting of four nitrification (1,2,4-triazole, dicyanodiamide, 3,4-dimethylpyrazole and 3-methylpyrazole) and two urease inhibitors (n-butyl-thiophosphoric acid triamide and n-(2-nitrophenyl) phosphoric triamide). The average spiking concentration of each NUI was 5 ÎÌg/L. Experimental and modeled breakthrough curves of NUI indicated no retardation for any of the inhibitors. Therefore, biodegradation was identified as the main elimination pathway for all substances and was highest in zones of high microbial biomass. Removal of 1,2,4-triazole was 50% and n-butyl-thiophosphoric acid triamide proved to be highly degradable and was completely removed after a hydraulic retention time (HRT) of 24 h. 50% of the mass recovery for nitrification inhibitors except for 3,4-dimethylpyrazole was observed at the effluent (4 days HRT). In addition, a mild effect of NUI on microbial biomass was noted. This study highlights that the degradation of NUI in BF depends on HRT and microbial biomass. © 2023 ElsevierVeröffentlichung Transformation of potentially persistent and mobile organic micropollutants in column experiments(2023) Pabst, Silke; Schumann, Pia; Ruhl, Aki Sebastian; Zeeshan, Muhammad