Listen
2 Ergebnisse
Suchergebnisse
Veröffentlichung Bioaccumulation in aquatic systems: methodological approaches, monitoring and assessment(2015)Bioaccumulation, the accumulation of a chemical in an organism relative to its level in the ambient medium, is of major environmental concern. Thus, monitoring chemical concentrations in biota are widely and increasingly used for assessing the chemical status of aquatic ecosystems. In this paper, various scientific and regulatory aspects of bioaccumulation in aquatic systems and the relevant critical issues are discussed. Monitoring chemical concentrations in biota can be used for compliance checking with regulatory directives, for identification of chemical sources or event-related environmental risk assessment. Assessing bioaccumulation in the field is challenging since many factors have to be considered that can affect the accumulation of a chemical in an organism. Passive sampling can complement biota monitoring since samplers with standardised partition properties can be used over a wide temporal and geographical range. Bioaccumulation is also assessed for regulation of chemicals of environmental concern whereby mainly data from laboratory studies on fish bioaccumulation are used. Field data can, however, provide additional important information for regulators. Strategies for bioaccumulation assessment still need to be harmonised for different regulations and groups of chemicals. To create awareness for critical issues and to mutually benefit from technical expertise and scientific findings, communication between risk assessment and monitoring communities needs to be improved. Scientists can support the establishment of new monitoring programs for bioaccumulation, e.g. in the frame of the amended European Environmental Quality Standard Directive. Quelle: http://link.springer.comVeröffentlichung Test strategy for assessing the risks of nanomaterials in the environment considering general regulatory procedures(2015)Background:
Engineered nanomaterials (ENMs) are marketed as a substance or mixtures and are additionally used due to their active agent properties in products such as pesticides or biocides, for which specific regulations apply. Currently, there are no specific testing strategies for environmental fate and effects of ENMs within the different regulations. An environmental test and risk assessment strategy for ENMs have been developed considering the general principles of chemical assessment.
Results:
The test strategy has been developed based on the knowledge of national and international discussions. It also takes into account the conclusions made by the OECD WPMN which held an expert meeting in January 2013. For the test strategy development, both conventional and alternative endpoints were discussed and environmental fate and effects were addressed separately.
Conclusion:
A tiered scheme as commonly used in the context of precautionary environmental risk assessment was suggested including the use of mathematical models and trigger values to either stop the procedure or proceed to the next tier. There are still several gaps which have to be filled, especially with respect to fate, to develop the test strategy further. The test strategy features a general approach. It is not specified to fulfil the information requirements of certain legislation (e.g. plant protection act, biocide regulation, REACH). However, the adaption of single elements of the strategy to the specific needs of certain legislation will provide a valuable contribution in relation to the testing of nanomaterials.Quelle: http://enveurope.springeropen.com/