Aufsätze

Dauerhafte URI für die Sammlunghttps://openumwelt.de/handle/123456789/6

Listen

Suchergebnisse

Gerade angezeigt 1 - 5 von 5
  • Veröffentlichung
    Pesticide exposure assessment for surface waters in the EU
    (2016) Bach, Martin; Diesner, Mirjam; Großmann, Dietlinde; Müller, Alexander; Priegnitz, Jan
    In 2001, the European Commission introduced a risk assessment project known as FOCUS (FOrum for the Coordination of pesticide fate models and their USe) for the surface water risk assessment of active substances in the European Union. Even for the national authorisation of plant protection products (PPPs), the vast majority of EU member states still refer to the four runoff and six drainage scenarios selected by the FOCUS Surface Water Workgroup. However, our study, as well as the European Food Safety Authority (EFSA), has stated the need for various improvements. Current developments in pesticide exposure assessment mainly relate to two processes. Firstly, predicted environmental concentrations (PECs) of pesticides are calculated by introducing model input variables such as weather conditions, soil properties and substance fate parameters that have a probabilistic nature. Secondly, spatially distributed PECs for soilŃclimate scenarios are derived on the basis of an analysis of geodata. Such approaches facilitate the calculation of a spatiotemporal cumulative distribution function (CDF) of PECs for a given area of interest and are subsequently used to determine an exposure concentration endpoint as a given percentile of the CDF. For national PPP authorisation, we propose that, in the future, exposure endpoints should be determined from the overall known statistical PEC population for an area of interest, and derived for soil and climate conditions specific to the particular member state. © 2016 Society of Chemical Industry
  • Veröffentlichung
    Pentachlorophenol and nine other chlorophenols in urine of children and adolescents in Germany - Human biomonitoring results of the German Environmental Survey 2014-2017 (GerES V)
    (2021) Apel, Petra; Kolossa-Gehring, Marike; Schmidt, Lukas; Murawski, Aline; Rucic, Enrico; Schmied-Tobies, Maria Irene Hilde; Schwedler, Gerda
    Chlorophenols comprise of a large group of chemicals used inter alia for the production of biocides, pharmaceuticals, other industrial products and are used e.g. as antiseptics or wood preservatives due to their biocidal properties. Several of them are classified as toxic to aquatic life and harmful to humans by ingestion, inhalation, or dermal contact, causing skin and eye irritation. Moreover, chlorophenols are possibly carcinogenic to humans. The most prominent chlorophenol - pentachlorophenol - is carcinogenic to humans, was banned in Germany in 1989 and further regulated by the European Commission in 2006 and included in the Stockholm Convention in 2017. Some chlorophenols are persistent in the environment and are also biodegradation products of precursor substances. To evaluate the health-relevance of recent exposure and monitor the effectiveness of regulatory measures, chlorophenols were analysed in the population-representative German Environmental Survey on Children and Adolescents 2014-2017 (GerES V). First-morning void urine samples of 485 3-17-year-old children and adolescents were analysed for ten chlorophenols. Pentachlorophenol was still quantified in 87% of the children and adolescents with a geometric mean (GM) concentration of 0.19 (my)g/L (0.16 (my)g/gcrea) and a maximum concentration of 6.7 (my)g/L (5.4 (my)g/gcrea). The maximum concentration was well below the health-based guidance value HBM-I of 25 (my)g/L (20 (my)g/gcrea). 4-Monochlorophenol was quantified in all samples with a GM concentration of 1.38 (my)g/L (1.14 (my)g/gcrea). 2-Monochlorophenol, 2,4-dichlorophenol, and 2,5-dichlorophenol were quantified in 97%, 98%, and 95% of the samples, with GMs of 0.26 (my)g/L (0.21 (my)g/gcrea), 0.24 (my)g/L (0.20 (my)g/gcrea), and 0.26 (my)g/L (0.21 (my)g/gcrea). 2,6-dichlorophenol, 2,3,4-trichlorophenol, and 2,4,5-trichlorophenol were quantified in 17-25% of the samples with GMs below the limit of quantification (LOQ) of 0.1 (my)g/L 2,4,6-trichlorophenol was quantified in 72% of the samples (GM: 0.13 (my)g/L, 0.11 (my)g/gcrea), 2,3,4,6-tetrachlorophenol in 44% of the samples (GM < LOQ). Comparison to previous cycles of GerES revealed substantially lower exposure to most of the chlorophenols in GerES V. Exposure levels found in Germany were comparatively low in contrast to North American results. © 2021 Published by Elsevier Inc.
  • Veröffentlichung
    Polystyrene microplastics do not affect juvenile brown trout (Salmo trutta f. fario) or modulate effects of the pesticide methiocarb
    (2020) Schmieg, Hannah; Huppertsberg, Sven; Knepper, Thomas P.; Ruhl, Aki Sebastian
    Background There has been a rising interest within the scientific community and the public about the environmental risk related to the abundance of microplastics in aquatic environments. Up to now, however, scientific knowledge in this context has been scarce and insufficient for a reliable risk assessment. To remedy this scarcity of data, we investigated possible adverse effects of polystyrene particles (104 particles/L) and the pesticide methiocarb (1 mg/L) in juvenile brown trout (Salmo trutta f. fario) both by themselves as well as in combination after a 96 h laboratory exposure. PS beads (density 1.05 g/mL) were cryogenically milled and fractionated resulting in irregular-shaped particles (<50 (micro)m). Besides body weight of the animals, biomarkers for proteotoxicity (stress protein family Hsp70), oxidative stress (superoxide dismutase, lipid peroxidation), and neurotoxicity (acetylcholinesterase, carboxylesterases) were analyzed. As an indicator of overall health, histopathological effects were studied in liver and gills of exposed fish. Results Polystyrene particles by themselves did not influence any of the investigated biomarkers. In contrast, the exposure to methiocarb led to a significant reduction of the activity of acetylcholinesterase and the two carboxylesterases. Moreover, the tissue integrity of liver and gills was impaired by the pesticide. Body weight, the oxidative stress and the stress protein levels were not influenced by methiocarb. Effects caused by co-exposure of polystyrene microplastics and methiocarb were the same as those caused by methiocarb alone. Conclusions Overall, methiocarb led to negative effects in juvenile brown trout. In contrast, polystyrene microplastics in the tested concentration did not affect the health of juvenile brown trout and did not modulate the toxicity of methiocarb in this fish species. © The Author(s) 2020
  • Veröffentlichung
    Width of vegetated buffer strips to protect aquatic life from pesticide effects
    (2023) Liebmann, Liana; Vormeier, Philipp; Liess, Matthias; Weisner, Oliver
    Vegetated buffer strips (VBS) are an effective measure to retain pesticide inputs during rain events. Numerous studies have examined the retention effects of VBS onpesticides. However, no study has addressed on a large scale with event-related peak concentrations how wide the VBS should be to avoid ecological impacts onaquatic life. Here, we investigated for 115 lowland stream sections in Germany the relevance of environmental and physico-chemical parameters to determine the in-stream pesticide concentration and their ecological risks. Based on peak concentrations related to rain events with precipitation amount resulting in VBS relevantsurface runoff for 30 of the 115 investigated stream sections (25 to 70 mm/d), we demonstrated that the average width of VBS was the main parameter (R2 = 0.38)reducing the pesticide input ratio, indicating a relevant proportion of surface runoff contributing to the total in-stream pesticide concentrations. Additionally, dryditches within agricultural fields increased pesticide input (R2 = 0.31). Generally, substances classified as slightly mobile were better retained by VBS than mobilesubstances. Other factors including slope, land use and vegetation cover of VBS had only a minor influence. We assessed the ecological risk of in-stream pesticideconcentrations by quantifying exceedances of regulatory- (RAC) and field-validated acceptable concentrations (ACfield). We then translated this ecological risk intoprotective VBS width by calculating the quotient of in-stream concentration and threshold (RQ). We estimate that a VBS width of 18 m is sufficient to meet theRQACfield protection goal for 95% of streams. The presence of dry ditches increased the protective VBS width to 32 m. In current agricultural practice, however, 26%of the water stretches investigated do not comply with the prescribed 5 m VBS. An extension of the VBS area to 18 m would demand 3.8% of agricultural land withinthe catchments. A 50% reduction in pesticide use, as required by the European green deal, would still result in 39% (RAC) and 68% (ACfield) of event-related samplesbeing exceeded. Consequently, we see the extension of the VBS width as the most efficient mearsure to sustainably reduce pesticide concentrations in small streams. © 2023 Elsevier
  • Veröffentlichung
    Polystyrene Microplastics modulate the toxicity of the hydrophilic insecticide Thiacloprid for Chironomid Larvae and also influence their burrowing behavior
    (2022) Krais, Stefanie; Anthes, Nils; Huppertsberg, Sven; Ruhl, Aki Sebastian
    As there is still little knowledge of interactions between microplastics (MP) and hydrophilic compounds, we propose ways the toxicity of hydrophilic pesticides can be modulated by MP, when sorption can be excluded. Larvae of Chironomus riparius were exposed to thiacloprid (TH, 1 mikrog/L) and polystyrene microplastic particles (PS; <50 mikrom; 150,000 and 1,000,000 particles/L) for 96 h, solely or in co-exposure. Burrowing behavior and mortality were observed. Larvae in treatments containing PS established themselves quicker in the sediment and kept the ability to rebury for a longer time compared to control and TH, respectively. While TH elevated the mortality, exposure to PS alone did not affect the survival of the larvae. In co-exposure of TH and PS, a concentration of 150,000 particles/L significantly reduced the toxicity of 1 mikrog/L TH after 96 h, an effect that was not observed at 1,000,000 particles/L. Therefore, we hypothesize that this modulation of the toxicity of TH eventually may have resulted from a combination of a "protective MP layer" in the gut and a higher retention time of particles in larvae exposed to 150,000 particles/L than in those exposed to 1,000,000 particles/L due to the lower number of ingestible particles in the former. © 2022 by the authors