Aufsätze

Dauerhafte URI für die Sammlunghttps://openumwelt.de/handle/123456789/6

Listen

Suchergebnisse

Gerade angezeigt 1 - 2 von 2
  • Veröffentlichung
    An ecotoxicological view on neurotoxicity assessment
    (2018) Legradi, J. B.; Paolo, C. Di; Kuckelkorn, Jochen; Kraak, M. H. S.; Grummt, Tamara
    The numbers of potential neurotoxicants in the environment are raising and pose a great risk for humans and the environment. Currently neurotoxicity assessment is mostly performed to predict and prevent harm to human populations. Despite all the efforts invested in the last years in developing novel in vitro or in silico test systems, in vivo tests with rodents are still the only accepted test for neurotoxicity risk assessment in Europe. Despite an increasing number of reports of species showing altered behaviour, neurotoxicity assessment for species in the environment is not required and therefore mostly not performed. Considering the increasing numbers of environmental contaminants with potential neurotoxic potential, eco-neurotoxicity should be also considered in risk assessment. In order to do so novel test systems are needed that can cope with species differences within ecosystems. In the field, online-biomonitoring systems using behavioural information could be used to detect neurotoxic effects and effect-directed analyses could be applied to identify the neurotoxicants causing the effect. Additionally, toxic pressure calculations in combination with mixture modelling could use environmental chemical monitoring data to predict adverse effects and prioritize pollutants for laboratory testing. Cheminformatics based on computational toxicological data from in vitro and in vivo studies could help to identify potential neurotoxicants. An array of in vitro assays covering different modes of action could be applied to screen compounds for neurotoxicity. The selection of in vitro assays could be guided by AOPs relevant for eco-neurotoxicity. In order to be able to perform risk assessment for eco-neurotoxicity, methods need to focus on the most sensitive species in an ecosystem. A test battery using species from different trophic levels might be the best approach. To implement eco-neurotoxicity assessment into European risk assessment, cheminformatics and in vitro screening tests could be used as first approach to identify eco-neurotoxic pollutants. In a second step, a small species test battery could be applied to assess the risks of ecosystems. Quelle: Verlagsinformation
  • Veröffentlichung
    Human biomonitoring initiative (HBM4EU): Human biomonitoring guidance values (HBM-GVs) derived for cadmium and its compounds
    (2021) Lamkarkach, Farida; Apel, Petra; Ougier, Eva; Garnier, Robert; Kolossa-Gehring, Marike; Lange, Rosa
    Aims The methodology agreed within the framework of the HBM4EU project is used in this work to derive HBM-GVs for the general population (HBM-GVGenPop) and for workers (HBM-GVWorker) exposed to cadmium (Cd) and its compounds. Methods For Cd, a significant number of epidemiological studies with doseââą Ìresponse relationships are available, in particular for kidney effects. These effects are described in terms of a relation between urinary Cd (U-Cd) or blood Cd (B-Cd) levels and low molecular weight proteinuria (LMWP) markers like beta-2-microglobulin (Î22M) and retinol-binding protein (RBP). In order to derive HBM-GVs for the general population and workers, an assessment of data from evaluations conducted by national or international organisations was undertaken. In this work, it appeared relevant to select renal effects as the critical effect for the both groups, however, differences between general population (including sensitive people) and workers (considered as an homogenous population of adults who should not be exposed to Cd if they suffer from renal diseases) required the selection of different key studies (i.e. conducted in general population for HBM-GVGenPop and at workplace for HBM-GVWorker). Results and conclusions For U-Cd, a HBM-GVGenPop of 1 (my)g/g creatinine (creat) is recommended for adults older than 50 years, based on a robust meta-analysis performed by EFSA (EFSA, 2009a). To take into account the accumulation of Cd in the human body throughout life, threshold or 'alert' values according to age were estimated for U-Cd. At workplace, a HBM-GVWorker of 2 (my)g/g creat is derived from the study of Chaumont et al., (2011) for U-Cd, and in addition to this recommendation a HBM-GVworker for B-Cd of 5 Ìg/L is also proposed. The HBM-GVWorker for U-Cd is similar to the biological limit value (BLV) set by the new amendment of the European Carcinogens and Mutagens Directive in June 2019 (2 (my)g/g creat for U-Cd). © 2021 The Authors