Listen
10 Ergebnisse
Filter
Einstellungen
Suchergebnisse
Veröffentlichung Richtwerte für 1-Methyl-2-pyrrolidon in der Innenraumluft(2014)Zum Schutz der Gesundheit der Bevölkerung setzt die Ad-hoc-Arbeitsgruppe Innenraumrichtwerte der Kommission Innenraumlufthygiene und der Obersten Landesgesundheitsbehörden Richtwerte für die Innenraumluft fest. Für eine gesundheitliche Bewertung von 1-Methyl-2-pyrrolidon in der Luft liegen keine hinreichend aussagekräftigen Humanstudien vor. In einer gut dokumentierten chronischen Inhalationsstudie an Ratten wurde eine signifikante Beeinträchtigung der Gewichtszunahme bei 400 mg/m3beobachtet. Die Ad-hoc-Arbeitsgruppe geht von dieser nachteiligen Wirkungskonzentration als Ausgangspunkt für die Ableitung des Richtwertes II aus. Mit einem Faktor von 5,6 zur Umrechnung auf eine kontinuierliche Exposition, einem Interspeziesfaktor für Toxikodynamik von 2,5, einem Faktor von 10 zur Berücksichtigung individueller Unterschiede und einem Faktor 2 zum Schutz besonders empfindlicher Gruppen ergibt sich ein gerundeter Richtwert II (Gefahrenwert) von 1 mg 1-Methyl-2-pyrrolidon/m3Innenraumluft. Der Richtwert I (Vorsorgewert) wird ausgehend von einer NOAEC von 40 mg/m3aus derselben Studie abgeleitet. Unter Anwendung derselben Extrapolationsfaktoren ergibt sich ein Richtwert I von 0,1 mg 1-Methyl-2-pyrrolidon/m3Innenraumluft.Quelle: http://link.springer.comVeröffentlichung Assessment of filtration efficiency and physiological responses of selected plant species to indoor air pollutants (toluene and 2-ethylhexanol) under chamber conditions(2017) Brenske, Klaus-Reinhard; Hörmann, Vanessa; Ulrichs, ChristianThree common plant species (Dieffenbachia maculata, Spathiphyllum wallisii, and Asparagus densiflorus) were tested against their capacity to remove the air pollutants toluene (20.0 mg m-3) and 2-ethylhexanol (14.6 mg m-3) under light or under dark in chamber experiments of 48-h duration. Results revealed only limited pollutant filtration capabilities and indicate that aerial plant parts of the tested species are only of limited value for indoor air quality improvement. The removal rate constant ranged for toluene from 3.4 to 5.7 L h-1 m-2 leaf area with no significant differences between plant species or light conditions (light/dark). The values for 2-ethylhexanol were somewhat lower, fluctuating around 2 L h-1 m-2 leaf area for all plant species tested, whereas differences between light and dark were observed for two of the three species. In addition to pollutant removal, CO2 fixation/respiration and transpiration as well as quantum yield were evaluated. These physiological characteristics seem to have no major impact on the VOC removal rate constant. Exposure to toluene or 2-ethylhexanol revealed no or only minor effects on D. maculata and S. wallisii. In contrast, a decrease in quantum yield and CO2 fixation was observed for A. densiflorus when exposed to 2-ethylhexanol or toluene under light, indicating phytotoxic effects in this species. Quelle: VerlagsinformationVeröffentlichung Suitability of Test Chambers for Analyzing Air Pollutant Removal by Plants and Assessing Potential Indoor Air Purification(2017) Brenske, Klaus-Reinhard; Hörmann, Vanessa; Ulrichs, ChristianVeröffentlichung Untersuchungen zur Etablierung der DIN EN 16516 als neue Referenznorm für die Prüfung von Formaldehydemissionen aus Holzwerkstoffen gemäß Chemikalien-Verbotsverordnung(2019) Wilke, Olaf; Brozowski, Frank; Jann, Oliver; Plehn, WolfgangIm Januar 2018 wurde die DIN EN 16516 "Bauprodukte: Bewertung der Freisetzung gefährlicher Stoffe - Bestimmung von Emissionen in die Innenraumluft" als harmonisierte europäische Prüfnorm veröffentlicht. Für die Etablierung der DIN EN 16516 als neue Referenznorm wurden verschiedene Emissionsprüfungen mit dem Ziel durchgeführt, ein neues Prüfverfahren für Formaldehydemissionen aus Holzwerkstoffen zu erarbeiten. Das übergeordnete Ziel ist die Minimierung des Risikos von Überschreitungen des Innenraumrichtwertes für Formaldehyd. Die Untersuchungen ergaben teilweise hohe Formaldehydemissionen, insbesondere bei höheren Beladungsfaktoren und Temperaturen, sowie bei niedrigen Luftwechselraten. Eine getestete Spanplatte hätte aufgrund ihrer hohen Formaldehydemission nicht auf den deutschen Markt gebracht werden dürfen. Durch vergleichende Untersuchungen konnte ein Umrechnungsfaktor in Höhe von 2,0 für die Umrechnung von Prüfwerten nach DIN EN 717-1 zu DIN EN 16516 abgeleitet werden. Quelle: https://opus4.kobv.deVeröffentlichung Particle mass concentrations and number size distributions in 40 Homes in Germany: Indoor-to-outdoor relationships, diurnal and seasonal variation(2020) Zhao, Jiangyue; Birmili, Wolfram; Daniels, Anja; Wehner, BirgitFew studies investigated residential particle concentration levels with a full picture of aerosol particles from 10 nm to 10 Ìm size range with size-resolved information, and none was performed in central Europe in the long-term in multiple homes. To capture representative diurnal and seasonal patterns of exposure to particles, and investigate the driving factors to their variations, measurements were performed in 40 homes for around two weeks each in Leipzig and Berlin, Germany. These over 500 days' measurements combined PM10 and PM2.5 mass concentrations, particle number concentration and size distribution (PNC and PNSD, 10-800 nm), CO2 concentration, and residential activities diary into a unique dataset. Natural ventilation was dominated, the mean ventilation rate calculated from CO2 measurements was 0.2 h-1 and 3.7 h-1 with closed and opened windows, respectively. The main findings of this study showed that, the residents in German homes were exposed to a significantly higher mass concentration of coarse particles than outdoors, thus indoor exposure to coarse particles cannot be described by outdoors. The median indoor PNC diurnal cycles were generally lower than outdoors (median I/O ratio 0.69). However, indoor exposure to particles was different in the cold and warm season. In the warm season, due to longer opening window periods, indoor sources' contribution was weakened, which also resulted in the indoor PNC and PNSD being very similar to the outdoors. In the cold season, indoor sources caused strong peaks of indoor PNC that exceeded outdoors, along with the relatively low penetration factor - 0.5 for all size ranges, and indoor particle losses, which was particularly effective in reducing the ultrafine PNC, resulting in a different particle exposure load than outdoors. This study provides a detailed understanding of residential particle exposure in multiple homes, facilitating future studies to assess health effects in residential environments. Quelle. https://aaqr.org/Veröffentlichung Risk assessment for irritating chemicals - derivation of extrapolation factors(2021) Mangelsdorf, Inge; Schröder, Katrin; Escher, Sylvia E.; Kolossa-Gehring, Marike; Debiak, MalgorzataIrritation of the eyes and the upper respiratory tract are important endpoints for setting guide values for chemicals. To optimize the use of the often-limited data, we analysed controlled human exposure studies (CHS) with 1-4 h inhalation of the test substance, repeated dose inhalation studies in rodents, and Alarie-Tests and derived extrapolation factors (EF) for exposure duration, inter- and intraspecies differences. For the endpoint irritating effects in the respiratory tract in rodents, geometric mean (GM) values of 1.9 were obtained for the EF for subacute ->subchronic (n = 16), 2.1 for subchronic -> chronic (n = 40), and 2.9 for subacute -> chronic (n = 10) extrapolation. Based on these data we suggest an EF of 2 for subchronic -> chronic and of 4 for subacute -> chronic extrapolation. In CHS, exposure concentration determines the effects rather than exposure duration. Slight reversible effects during 4 h exposure indicate that an EF of 1 can be considered for assessing chronic exposures. To assess species extrapolation, 10 chemicals were identified with both, reliable rat inhalation studies and CHS. The GM of the ratio between the No Observed Adverse Effect Concentration (NOAEC) in rats and humans was 2.3 and increased to 3.6 when expanding the dataset to all available EF (n = 25). Based on these analyses, an EF of 3 is suggested to extrapolate from a NOAEC in a chronic rat study to a NOAEC in a CHS. The analysis of EFs for the extrapolation from a 50% decrease in respiratory frequency in the Alarie test in mice (RD50) to a NOAEC in a CHS resulted in a GM of 40, for both, the reliable (n = 11) and the overall dataset (n = 19). We propose to use the RD50 from the Alarie test for setting guide values and to use 40 as EF. Efs for intraspecies differences in the human population must account for susceptible persons, most importantly for persons with chemical intolerance (CI), who show subjective signs of irritation at low concentrations. The limited data available do not justify to deviate from an EF of 10 - 20 as currently used in different regulatory settings. © 2020 The Authors.Veröffentlichung Formaldehyde, aliphatic aldehydes (C2-C11), furfural, and benzaldehyde in the residential indoor air of children and adolescents during the German Environmental Survey 2014-2017(2022) Bethke, Robert; Birmili, Wolfram; Brasse, Gregor; Conrad, André; Daniels, Anja; Debiak, Malgorzata; Kolossa-Gehring, Marike; Hurraß, Julia; Schechner, NadineIndoor air concentrations of formaldehyde, furfural, benzaldehyde, and 11 aliphatic aldehydes (C2-C11) were measured in residences of 639 participants in the German Environmental Survey for Children and Adolescents 2014-2017 (GerES V). Sampling was conducted using passive samplers over periods of approximately seven days for each participant. The most abundant compounds were formaldehyde and hexanal with median concentrations of 24.9 (micro)g m-3 and 10.9 (micro)g m-3, respectively. Formaldehyde concentrations exceeded the Guide Value I recommended by the German Committee on Indoor Guide Values (Ausschuss für Innenraumrichtwerte - AIR) (0.10 mg m-3) for 0.3% of the participating residences. The sum of aliphatic n-aldehydes between C4 (butanal) and C11 (undecanal) exceeded their Guide Value (0.10 mg m-3) for 2.0% of the residences. The geometric mean concentrations of most aldehydes were lower than in the earlier GerES IV (2003-2006) study. Formaldehyde and hexanal concentrations, however, were comparable in both studies and showed no significant difference. Indoor aldehyde concentrations did not exhibit significant correlations with factors collected in questionnaires, such as the age of the participants, their socio-economic status, the location of the residence (former East/West Germany), migration background, tobacco exposure, and the type of furniture used. The validity of the passive sampler measurements was verified against active sampling techniques in a test chamber experiment. © 2021 The AuthorsVeröffentlichung Diverging trends of plasticizers (phthalates and non-phthalates) in indoor and freshwater environments - why?(2022) Birmili, Wolfram; Koschorreck, Jan; Nagorka, Regine; Schulze, JonaBackground European chemicals management aims to protect human health and the environment from legacy and emerging contaminants. The plasticizer market changed in response to the restriction of low molecular weight (LMW) phthalate plasticizers such as Di (2-ethylhexyl) phthalate (DEHP) due to their hazardous properties. We investigated patterns and trends of 19 regulated and emerging plasticizers in house dust from German homes and in suspended particulate matter (SPM) from major German rivers. The samples were used from the mid-2000s and late 2010s from two governmental long-term monitoring programs in Germany. Results While the sum of the respective plasticizer levels hardly changed over the study period, we observed a significant decrease of LMW phthalates in both house dust (2003/06, 80% of the (Sigma)plasticizer concentration; 2014/17, 31%) and SPM (2005, 48%; 2017, 28%). This was accompanied by their substitution with high molecular weight (HMW) phthalates and non-phthalates. HMW phthalates increased from 19% of the (Sigma)plasticizer concentration to 46% between the mid-2000s and the late 2010s in house dust, and from 50% to 63% in SPM samples. Diisononyl phthalate (DINP) replaced DEHP as the dominant plasticizer in both compartments. A significant tenfold increase (p<0.05) was observed in SPM samples for Di (2-propylheptyl) phthalate (DPHP) (1-13%), compared to low levels in house dust (2014/17, 1%). Non-phthalates increased to 23% of the (Sigma)plasticizer concentration in house dust but only to 9% in SPM (mid-2000s: house dust,<1%; SPM, 1.5%). In recent house dust samples, Di (2-ethylhexyl) terephthalate (DEHT) had the third highest concentration of all plasticizers and contributed 18% to the total load, whereas Tris (2-ethylhexyl) trimellitate (TOTM) was one of the major non-phthalates in SPM samples. Conclusions Unlike in the indoor environment, the substitution of LMW phthalates in the aquatic environment was characterized by a significant shift towards plasticizers with potentially hazardous properties. DPHP and TOTM were identified by European chemical regulation as potentially endocrine disrupting compounds and persistent, bioaccumulative and toxic compounds. Our data document the need for integrated chemicals management to safeguard the transition to a non-toxic environment. © The Author(s) 2022Veröffentlichung A review of critical residential buildings parameters and activities when investigating indoor air quality and pollutants(2022) Baeza, María Teresa; Dudzinska, Marzenna R.; Torkmahalleh, Mehdi Amouei; Scutaru, Ana MariaIndoor air in residential dwellings can contain a variety of chemicals, sometimes present at concentrations or in combinations which can have a negative impact on human health. Indoor Air Quality (IAQ) surveys are often required to characterize human exposure or to investigate IAQ concerns and complaints. Such surveys should include sufficient contextual information to elucidate sources, pathways, and the magnitude of exposures. The aim of this review was to investigate and describe the parameters that affect IAQ in residential dwellings: building location, layout, and ventilation, finishing materials, occupant activities, and occupant demography. About 180 peer-reviewed articles, published from 01/2013 to 09/2021 (plus some important earlier publications), were reviewed. The importance of the building parameters largely depends on the study objectives and whether the focus is on a specific pollutant or to assess health risk. When considering classical pollutants such as particulate matter (PM) or volatile organic compounds (VOCs), the building parameters can have a significant impact on IAQ, and detailed information of these parameters needs to be reported in each study. Research gaps and suggestions for the future studies together with recommendation of where measurements should be done are also provided. © 2022 The Authors.