Listen
62 Ergebnisse
Suchergebnisse
Veröffentlichung Polychlorinated biphenyls (PCB) and organochlorine pesticides (OCP) in blood plasma - results of the German environmental survey for children and adolescents 2014-2017 (GerES V)(2020) Bandow, Nicole; Conrad, André; Kolossa-Gehring, Marike; Murawski, Aline; Sawal, GeorgeThe German Environmental Survey for Children and Adolescents 2014-2017 (GerES V) investigated the current internal exposure to polychlorinated biphenyls (PCB) and organochlorine pesticides (OCP). These analyses were carried out for a population-representative sub-sample of 1135 children and adolescents (aged 3-17 years) of all 2394 GerES V participants. Blood plasma samples were analyzed for seven indicator PCB (PCB 28, PCB 52, PCB 101, PCB 118, PCB 138, PCB 153 and PCB 180) and selected OCP (hexachlorobenzene, three hexachlorocyclohexane isomers, 4,4'-DDT, 4,4'-DDD and 4,4'-DDE). Despite risk mitigation measures and bans put into force some decades ago children and adolescents living in Germany are still exposed to PCB and OCP: Highest geometric mean plasma concentrations were measured for 4,4'-DDE (0.158 g/L), followed by PCB 138 (0.049 g/L), PCB 153 (0.066 g/L) and PCB 180 (0.032 g/L). Different application patterns of compounds between former East and former West Germany are still reflected by differences in plasma concentrations. Significant differences between age groups and by sexes were found. Moreover, the influence of breastfeeding and fish consumption, which was also found in other studies, was confirmed. Comparison with the results of GerES 2003-2006 confirms a decreasing trend in blood samples observed world-wide. Currently, health-based guidance values for PCB are still exceeded, though to a very limited extent. Also, the widespread occurrence of these compounds underlines the need for further monitoring of these compounds in humans although they are no longer marketed. Quelle: https://www.sciencedirect.comVeröffentlichung N-methylmalonamic acid (NMMA) as metabolite of methylisothiazolinone and methylchloroisothiazolinone in 24-h urine samples of the German Environmental Specimen Bank from 2000 to 2017(2020) Schettgen, Thomas; Kolossa-Gehring, Marike; Rüther, Maria; Weber, TillMethylisothiazolinone (MI) and the mixture of methylchloroisothiazolinone/methylisothiazolinone (MCI/MI, 3:1) are widespread biocides used in cosmetics, household products, paints or as disinfectant in air-conditioning systems. Exposure to these compounds has raised concerns due to their sensitizing potential, as rates of skin sensitization were reported to increase in the last decade. We have analyzed N-methylmalonamic acid (NMMA), a common metabolite of MI and MCI in 24-h urine samples of the German Environmental Specimen Bank collected from 480 participants (240 male/240 female) between the years 2000 and 2017. Using these data, we were able to calculate the overall daily intake of MI and/or MCI/MI (3:1) of the study participants and point out time trends. NMMA was determined in all urine samples investigated above the LOQ of 0.5 (my)g/L urine. Median and 95th percentile level of NMMA in all 24-h urine samples was 4.1 (my)g/g creatinine and 8.5 (my)g/g creatinine, respectively. This would correspond to a median and 95th percentile daily intake of 0.35 (my)g/kg bw and 0.71 (my)g/kg bw for exclusive uptake of MI and 0.64 (my)g/kg bw and 1.28 (my)g/kg bw for exclusive uptake of MCI/MI (3:1). We noted only slight variations over time for median exposures, but an increasing time trend in the 95th percentile exposure between 2006 and 2011 with a decrease in recent years, probably reflecting regulatory measures on MI and MCI/MI (3:1) in cosmetic products. Increasing knowledge on determinants of exposure to MI and/or MCI/MI (3:1) would be necessary to further lower exposure to these sensitizing compounds. © 2019 Elsevier Ltd. All rights reserved.Veröffentlichung Phthalate metabolites in urine of children and adolescents in Germany. Human biomonitoring results of the German Environmental Survey GerES V, 2014-2017(2020) Conrad, André; Daniels, Anja; Kolossa-Gehring, Marike; Lange, Rosa; Rucic, Enrico; Schmied-Tobies, Maria Irene Hilde; Schulz, Christine; Schwedler, GerdaDuring the population representative German Environmental Survey of Children and Adolescents (GerES V, 2014-2017) 2256 first-morning void urine samples from 3 to 17 years old children and adolescents were analysed for 21 metabolites of 11 different phthalates (di-methyl phthalate (DMP), di-ethyl phthalate (DEP), butylbenzyl phthalate (BBzP), di-iso-butyl phthalate (DiBP), di-n-butyl phthalate (DnBP), di-cyclohexyl phthalate (DCHP), di-n-pentyl phthalate (DnPeP), di-(2-ethylhexyl) phthalate (DEHP), di-iso-nonyl phthalate (DiNP), di-iso-decyl phthalate (DiDP) and di-n-octyl phthalate (DnOP)). Metabolites of DMP, DEP, BBzP, DiBP, DnBP, DEHP, DiNP and DiDP were found in 97-100% of the participants, DCHP and DnPeP in 6%, and DnOP in none of the urine samples. Geometric means (GM) were highest for metabolites of DiBP (MiBP: 26.1 my g/L), DEP (MEP: 25.8 my g/L), DnBP (MnBP: 20.9 my g/L), and DEHP (cx-MEPP: 11.9 my g/L). For all phthalates but DEP, GMs were consistently higher in the 3-5 years old children than in the 14-17 years old adolescents. For DEHP, the age differences were most pronounced. All detectable phthalate biomarker concentrations were positively associated with the levels of the respective phthalate in house dust. In GerES V we found considerably lower phthalate biomarker levels than in the preceding GerES IV (2003-2006). GMs of biomarker levels in GerES V were only 18% (BBzP), 23% (MnBP), 23% (DEHP), 29% (MiBP) and 57% (DiNP) of those measured a decade earlier in GerES IV. However, some children and adolescents still exceeded health-based guidance values in the current GerES V. 0.38% of the participants had levels of DnBP, 0.08% levels of DEHP and 0.007% levels of DiNP which were higher than the respective health-based guidance values. Accordingly, for these persons an impact on health cannot be excluded with sufficient certainty. The ongoing and substantial exposure of vulnerable children and adolescents to many phthalates confirms the need of a continued monitoring of established phthalates, whether regulated or not, as well as of potential substitutes. With this biomonitoring approach we provide a picture of current individual and cumulative exposure developments and body burdens to phthalates, thus providing support for timely and effective chemicals policies and legislation. © 2020 The Authors. Published by Elsevier GmbH.Veröffentlichung The methylisothiazolinone and methylchloroisothiazolinone metabolite N-methylmalonamic acid (NMMA) in urine of children and adolescents in Germany - Human biomonitoring results of the German Environmental Survey 2014-2017 (GerES V)(2020) Conrad, André; Kolossa-Gehring, Marike; Murawski, Aline; Rucic, Enrico; Schmied-Tobies, Maria Irene HildeMixtures of methylisothiazolinone and methylchloroisothiazolinone are used as biocides in cosmetics, cleaning agents, and water-based paint. A biomonitoring method to evaluate exposure to these compounds was developed using N-methylmalonamic acid (NMMA), the main metabolite of both, methylisothiazolinone and methylchloroisothiazolinone, as the exposure biomarker. First-morning void urine samples (N = 2078) of 3- to 17-year-old children and adolescents living in Germany were analysed for concentrations of NMMA in the population representative German Environmental Survey for Children and Adolescents GerES V (2014-2017). NMMA was quantified in almost all samples, with a geometric mean concentration of 6.245 My g/L (5.303 my g/gcrea) and a 95th percentile of 15.0 my g/L (12.6 ÎÌg/gcrea). Urinary concentrations could not be related to self-reported application of specific cleaning agents or personal care products, leaving potential, specific sources of exposure unrevealed as most products relevant for isothiazolinone exposure are used ubiquitously. For the first time, reference values can be derived for urinary NMMA for children and adolescents in Germany, facilitating a more substantiated exposure assessment. © 2020 Published by Elsevier GmbH.Veröffentlichung A biomonitoring study assessing the exposure of young German adults to butylated hydroxytoluene (BHT)(2020) Schmidtkunz, Christoph; Kolossa-Gehring, Marike; Küpper, Katja; Weber, TillThe antioxidant 2,6-di-tert-butyl-4-methylphenol (butylated hydroxytoluene, BHT) is used ubiquitously in food, cosmetics, pharmaceuticals, fuels, plastics, rubbers and many other products. Therefore, exposure of the general population to this substance is likely. We analyzed the BHT metabolite 3,5-di-tert-butyl-4-hydroxybenzoic acid ("BHT acid") in 24-h urine samples from the German Environmental Specimen Bank with the aim of gaining a better understanding of the internal burden of BHT in young nonspecifically exposed adults. The study population consisted of students between 20 and 29 years of age at the time of sampling, all from Halle/Saale in Central Germany. In total, 329 samples collected in the years 2000, 2004, 2008, 2012, 2015, and 2018 were measured by ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). BHT acid was detected above the limit of quantification (0.2 My g/L) in 98% of the samples. The median of the measured concentrations was 1.06 My g/L and 1.24 My g/g creatinine respectively, the median of the daily excretion was 1.76 My g/24 h and - additionally normalized for body weight - 26.8 ng/24 h * kg bw respectively. The corresponding 90th percentiles were 3.28 My g/L, 3.91 My g/g creatinine, 5.05 My g/24 h, and 81.9 ng/24 h * kg bw. Medians of creatinine-corrected values were slightly higher in women than in men, while the opposite situation was observed for the volume concentrations and the 24-h excretion values (not corrected for body weight). Values simultaneously normalized both for 24-h excretion and body weight did not exhibit any significant differences between males and females, probably indicating a virtually identical magnitude of exposure for both genders. The background exposure of the investigated population was found to be largely constant since the year 2000, with only weak temporal trends at most. Daily intakes were estimated from excretion values and found to be largely below the acceptable daily intake (ADI) of BHT at 0.25 mg/kg bw: our worst-case estimate is a daily BHT intake of approximately 0.1 mg/kg bw at the 95th percentile level. However, these intake assessments rely on very limited quantitative data regarding human metabolism of BHT. © 2020 Elsevier GmbH. All rights reserved.Veröffentlichung Per- and polyfluoroalkyl substances in blood plasma - Results of the German Environmental Survey for children and adolescents 2014-2017 (GerES V)(2020) Conrad, André; Duffek, Anja; Kolossa-Gehring, Marike; Lange, Rosa; Rucic, Enrico; Schulte, Christoph; Wellmitz, JörgThe 5th cycle of the German Environmental Survey (GerES V) investigated the internal human exposure of children and adolescents aged 3-17 years in Germany to per- and polyfluoroalkyl substances (PFAS). The fieldwork of the population-representative GerES V was performed from 2014 to 2017. In total, 1109 blood plasma samples were analysed for 12 PFAS including perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and perfluorohexane sulfonic acid (PFHxS). PFOS was quantified in all and PFOA in almost all samples, demonstrating ubiquitous exposure. The highest geometric mean concentrations measured were 2.49 ng/mL for PFOS, followed by PFOA (1.12 ng/mL) and PFHxS (0.36 ng/mL), while concentrations of other PFAS were found in much lower concentrations. The 95th percentile levels of PFOS and PFOA were 6.00 and 3.24 ng/mL, respectively. The results document a still considerable exposure of the young generation to the phased out chemicals PFOS and PFOA. The observed exposure levels vary substantially between individuals and might be due to different multiple sources. The relative contribution of various exposure parameters such as diet or the specific use of consumer products need to be further explored. Although additional investigations on the time trend of human exposure are warranted, GerES V underlines the need for an effective and sustainable regulation of PFAS as a whole. Source: © 2020 Elsevier GmbHVeröffentlichung Artisanal and small-scale gold mining: A cross-sectional assessment of occupational mercury exposure and exposure risk factors in Kadoma and Shurugwi, Zimbabwe(2020) Mambrey, Viola; Rakete, Stefan; Tobollik, MyriamIn artisanal and small-scale gold mining (ASGM) the toxic metal mercury is used for gold extraction. The objective of this cross-sectional study was to assess mercury concentrations in urine and blood and mercury-related symptoms of participants identifying themselves as miners from Kadoma and Shurugwi, Zimbabwe. Moreover, we aimed to explore possible risk factors influencing mercury body burden. In 2019, urine and blood samples of 207 participants were collected and analyzed for mercury using atomic absorption spectroscopy. All participants answered questions regarding their exposure risks. The median urine mercury value was 4.75 my g/L with a maximum of 612 my g/L. Median mercury concentration in creatinine corrected urine values was 3.98 my g/g with a maximum value of 478 my g/g. The median blood mercury value was 2.70 ÎÌg/L with a maximum of 167 my g/L. Correlations between exposure risks factors such as the lack of retort use and elevated mercury values were demonstrated. ASGM is very common in Zimbabwe. Thus, mercury exposure is a major occupational health risk for miners. Moreover, this study emphasizes the impact of exposure risk factors on the mercury body burden. © 2020 The AuthorsVeröffentlichung Time course of phthalate cumulative risks to male developmental health over a 27-year period: Biomonitoring samples of the German Environmental Specimen Bank(2020) Apel, Petra; Kortenkamp, Andreas; Conrad, André; Koch, Holger Martin; Kolossa-Gehring, Marike; Rüther, MariaIn several human biomonitoring surveys, changes in the usage patterns of phthalates have come to light, but their influence on the risks associated with combined exposures is insufficiently understood. Based on the largest study to date, the 27-year survey of urinary phthalate metabolite levels in 24-hour urine samples from the German Environmental Specimen Bank, we present a deep analysis of changing phthalate exposures on mixture risks. This analysis adopts the Hazard Index (HI) approach based on the five phthalates DBP, DIBP, BBP, DEHP and DINP. Calculations of the hazard index for each study participant included updated phthalate reference doses for anti-androgenicity (RfDAAs) that take account of new evidence of phthalates' developmental toxicity. The Maximum Cumulative Ratio (MCR) approach was used to establish whether a subjectâ€Ìs combined exposure was dominated by one phthalate or was influenced by several phthalates simultaneously. Generally, over the years there was a shift towards lower HIs and higher MCRs, reflecting an increased complexity of the combined exposures. The decade from 1988 to about 1999 was characterised by rather high HIs of between 3 and 7 (95th percentile) which were driven by exposure to DBP and DEHP, often exceeding their single acceptable exposures. Traditional single phthalate risk assessments would have underestimated these risks by up to 50%. From 2006 onwards, no study participant experienced exposures above acceptable levels for a single phthalate, but combined exposures were still in excess of HI = 1. From 2011 onwards most individuals stayed below HI = 1. In interpreting these results, we caution against the use of HI = 1 as an acceptable limit and develop proposals for improved and more realistic mixture risk assessments that take account of co-exposures to other anti-androgenic substances also capable of disrupting the male reproductive system. From this perspective, we regard HIs between 0.1 and 0.2 as more appropriate for evaluating combined phthalate exposures. Assessed against lowered HIs of 0.1 - 0.2, the combined phthalate exposures of most study participants exceeded acceptable levels in all study years, including 2015. Continued monitoring efforts for phthalate combinations are required to provide the basis for appropriate risk management measures. © 2020 The Authors.Veröffentlichung Metabolites of the substitute plasticiser Di-(2-ethylhexyl) terephthalate (DEHTP) in urine of children and adolescents investigated in the German Environmental Survey GerES V, 2014-2017(2020) Conrad, André; Koch, Holger Martin; Kolossa-Gehring, Marike; Rucic, Enrico; Schmied-Tobies, Maria Irene Hilde; Schwedler, GerdaMetabolites of di-(2-ethylhexyl) terephthalate (DEHTP), a substitute for ortho-based phthalate plasticisers like di-(2-ethylhexyl) phthalate (DEHP), were analysed in 2112 first-morning void urine samples from children and adolescents aged 3-17 years, participating in the population representative German Environmental Survey on Children and Adolescents, GerES V 2014-2017. The major metabolite 5cx-MEPTP was detected in all urine samples with a geometric mean (GM) of 7.39 (my)g/L, with highest levels in the mg/L range. The GM for the other metabolites were 0.55 (my)g/L for 5OH-MEHTP, 0.54 (my)g/L for 5oxo-MEHTP and below the limit of quantification (LOQ) for 2cx-MMHTP. As already observed for other plasticisers and their substitutes, the youngest children (3-5 years) had 2-2.5-fold higher urinary DEHTP metabolite levels compared to 14-17 years old adolescents. High urinary levels of DEHTP metabolites were associated with high DEHTP concentrations in house dust. None of the samples analysed exceeded the toxicologically derived German human biomonitoring guidance value (HBM-I-Value) of 1.8 mg/L for 5cx-MEPTP. Comparison with DEHTP levels reported in other HBM studies worldwide confirmed a widespread exposure of children, adolescents and adults, with considerably higher exposures (2.6-7 fold) reported in the United States. In GerES V, exposure data for 12 different phthalates and the phthalate substitute DINCH were generated as well. Together with the data for DEHTP presented in this manuscript, GerES V allows a current and comprehensive overview on the concurrent exposure of German children and adolescents to common plasticisers. Further evaluation of aggregate exposure characteristics shall support efforts to reduce chemical hazard burden from plasticisers in Germany and beyond. © 2020 The Author(s).Veröffentlichung Time trend of exposure to dechloranes: Plasma samples of German young adults from the environmental specimen bank collected from 1995 to 2017(2020) Fromme, Hermann; Thomsen, Cathrine; Aschenbrenner, Bettina; Kolossa-Gehring, Marike; Weber, TillDechloranes, like Dechlorane Plus® are commonly used flame retardants identified by the EU as substances of very high concern (SVHC) because of their persistence and bioaccumulation potential. To characterize the dechlorane exposure of Germans in the last two decades, 180 archived blood plasma samples of the German Environmental Specimen Bank (students aged 20-29 years) collected at six time points between 1995 and 2017 were analyzed for four dechloranes; namely Dechlorane Plus® (syn- and anti-DDC-CO), dechlorane 602 (DDC-DBF), and dechlorane 603 (DDC-Ant). These were quantified using a GC-MS/MS method. Overall, anti- and syn-DDC-CO were detected in 88% and 98% of the samples, whereas DDC-DBF and DDC-Ant were found in 40% and 37% of the samples, respectively. The median (95th percentile) values were 1.0 ng/g lipid weight (l.w.) (3.0 ng/g l.w.). for anti-DDC-CO, 0.6 ng/g l.w (1.9 ng/g l.w.). for syn-DDC-CO, 0.1 ng/g l.w (0.6 ng/g l.w.). for DDC-DBF, and 0.1 ng/g l.w (0.2 ng/g l.w.). for DDC-Ant. The 95th percentile concentrations of the sum of syn- and anti-DDC-CO decreased from 4.2 ng/g l.w. in 1995, to 2.9 ng/g l.w. in 1999, and subsequently increased to 3.7 ng/g l.w. in 2008, and up to 5.9 ng/g l.w. in 2017. A statistically significant decrease with time was observed for DDC-DBF and DDC-Ant, but not for DDC-CO. Our medians found in blood samples in 2017 are similar to those observed in Germany in 2013/14, but higher compared to values reported in other European countries. Overall, more toxicological and monitoring data is needed to better characterize the potential impact on health. © 2020 Elsevier GmbH