Listen
4 Ergebnisse
Suchergebnisse
Veröffentlichung Substitutes mimic the exposure behaviour of REACH regulated phthalates(2021) Apel, Petra; Kolossa-Gehring, Marike; Lange, Rosa; Lemke, Nora; Debiak, Malgorzata; Murawski, Aline; Weber, TillThe population is constantly exposed to potentially harmful substances present in the environment, including inter alia food and drinking water, consumer products, and indoor air. Human biomonitoring (HBM) is a valuable tool to determine the integral, internal exposure of the general population, including vulnerable subgroups, to provide the basis for risk assessment and policy advice. The German HBM system comprises of five pillars: (1) the development of suitable analytical methods for new substances of concern, (2) cross-sectional population-representative German Environmental Surveys (GerES), (3) time trend analyses using archived samples from the Environmental Specimen Bank (ESB), (4) the derivation of health-based guidance values as a risk assessment tool, and (5) transfer of data into the European cooperation network HBM4EU. The goal of this paper is to present the complementary elements of the German HBM system and to show its strengths and limitations on the example of plasticizers. Plasticizers have been identified by EU services and HBM4EU partners as priority substances for chemical policy at EU level. Using the complementary elements of the German HBM system, the internal exposure to classical phthalates and novel alternative plasticizers can be reliably monitored. It is shown that market changes, due to regulation of certain phthalates and the rise of substitutes, are rapidly reflected in the internal exposure of the population. It was shown that exposure to DEHP, DiBP, DnBP, and BBzP decreased considerably, whereas exposure to the novel substitutes such as DPHP, DEHTP, and Hexamoll®DINCH has increased significantly. While health-based guidance values for several phthalates (esp. DnBP, DiBP, DEHP) were exceeded quite often at the turn of the millennium, exceedances today have become rarer. Still, also the latest GerES reveals the ubiquitous and concurrent exposures to many plasticizers. Of concern is that the youngest children showed the highest exposures to most of the investigated plasticizers and in some cases their levels of DiBP and DnBP still exceeded health-based guidance values. Over the last years, mixture exposures are increasingly recognized as relevant, especially if the toxicological modes of action are similar. This is supported by a cumulative risk assessment for four endocrine active phthalates which confirms the still concerning cumulative exposure in many young children. Given the adverse health effects of some phthalates and the limited toxicological knowledge of substitutes, exposure reduction and surveillance are needed on German and EU-level. Substitutes need to be monitored, to intervene if exposures are threatening to exceed acceptable levels, or if new toxicological data question their appropriateness. It is strongly recommended to reconsider the use of plastics and plasticizers. © 2021 Published by Elsevier GmbH.Veröffentlichung Corrigendum to "Substitutes mimic the exposure behaviour of REACH regulated phthalates - A review of the German HBM system on the example of plasticizers"(2022) Apel, Petra; Kolossa-Gehring, Marike; Lange, Rosa; Lemke, Nora; Debiak, Malgorzata; Murawski, Aline; Weber, TillVeröffentlichung Nonylphenol (NP) exposure in Germany between 1991 and 2021: urinary biomarker analyses in the German Environmental Specimen Bank (ESB)(2022) Ringbeck, Benedikt; Kolossa-Gehring, Marike; Bury, Daniel; Weber, TillNonylphenol (NP) is a high production volume chemical with a wide range of uses, e.g. in NP ethoxylates (NPEO). NP and NPEO have become ubiquitous in the environment and are considered of concern due to their general ecotoxicity and endocrine disrupting properties. However, knowledge on human exposure is scarce. In this study, we analyzed novel NP metabolites (OH-NP and oxo-NP) as robust biomarkers of exposure in 24h-urine samples from the German Environmental Specimen Bank (ESB). This enables us to reliably determine the individual NP body burden and to retrospectively evaluate NP exposure over the past 30 years. We analyzed 660 urine samples from eleven sampling years between 1991 and 2021. All samples were from young German adults between 20 and 29 years of age. OH-NP was quantifiable in all samples until 2017. In 2019 and 2021, the frequency of samples above the LOQ dropped to 90% and 77%, respectively. Median OH-NP concentrations significantly decreased from 4.32 (micro)g/L in 1991 to 0.70 (micro)g/L in 2021. OH-NP and oxo-NP levels correlated strongly, but oxo-NP concentrations and detections were considerably lower, in line with its known lower metabolic conversion. Reverse dosimetry back-calculated daily intakes (DI) of NP, based on OH-NP, decreased by almost a factor of four from medians of 0.16 (micro)g/(kg bw*d) in 1991 to 0.04 (micro)g/(kg bw*d) in 2021, respectively. The major drop took place only after 2012. This came as a surprise, because strict restrictions had been enacted much earlier in the EU, in 2003. All NP DIs were below the provisional tolerable daily intake of 5 (micro)g/(kg bw*d) from the Danish Environmental Agency. DIs back-calculated from the ESB biomonitoring data agree well with calculations from food. This indicates to contaminated foodstuff as a major source of exposure. The time lag of regulatory restrictions to decreasing human exposure levels, the general lack of knowledge on exposure levels in susceptible populations such as children, and the ongoing worldwide use of NP underline the urgent need to continue monitoring NP exposures in Germany and worldwide. With these novel NP biomarkers, we provide a robust and sensitive tool for exposure and risk assessments, complementing environmental monitoring. © 2022 The AuthorsVeröffentlichung Increasing exposure to the UV filters octocrylene and 2-ethylhexyl salicylate in Germany from 1996 to 2020: Human biomonitoring in 24-h urine samples of the German Environmental Specimen Bank (ESB)(2023) Bury, Daniel; Ebert, Katharina E.; Kolossa-Gehring, Marike; Weber, TillThe UV filters octocrylene (OC) and 2-ethylhexyl salicylate (EHS) are commonly used in sunscreens and frequently detected in environmental media. However, knowledge on human exposures is scarce. In this human biomonitoring (HBM) study, we analyzed concentrations of exposure biomarkers specific to OC (CPAA, DOCCA, 5OH-OC) and EHS (5OH-EHS, 5oxo-EHS, 5cx-EPS) in 24-h urine samples (n=420) from the German Environmental Specimen Bank (ESB). These samples were collected from German students (20-29 years; 30 males/30 females per year) between 1996 and 2020 (4-year intervals; collection in winter). We found continuously increasing OC and EHS exposures (Jonckheere-Terpstra; p < 0.001) documented by very few to no samples with concentrations of the most sensitive biomarkers CPAA and 5cx-EPS above the limit of quantification (LOQ) in 1996 (5 % and 0 %, respectively) and reaching 100 % and 93 % above the LOQ in 2016, with median concentrations of 4.79 and 0.071 (micro)g/L, respectively. In 2020, biomarker concentrations slightly decreased to 3.12 (micro)g/L CPAA (97 %>LOQ) and 0.060 (micro)g/L 5cx-EPS (88 %>LOQ). This general trend was confirmed by the other biomarkers, however at lower detection rates. Based on metabolite excretion in the 24-h urine samples and human toxicokinetic data, we calculated maximum daily intakes (DI) of 17 (micro)g/(kg bw * d) OC and 59 (micro)g/(kg bw * d) EHS. Based on a derived no-effect level (DNEL) of 0.8 mg/(kg bw * d), the OC exposures of individuals in our study did not indicate any health risk. Similarly, for EHS all biomarker concentrations were well below the HBM-I values of 12 (micro)g/L 5OH-EHS and 11 (micro)g/L 5cx-EPS. Our data proves the general applicability of specific OC and EHS metabolites for HBM in the general population and shows clearly increasing exposures. Higher (co-)exposures must be expected in populations with increased sunscreen use such as (summer) vacationers, children and outdoor workers. © 2023 The Author(s).