Listen
3 Ergebnisse
Filter
Einstellungen
Suchergebnisse
Veröffentlichung Health effects from contaminant exposure in Baltic Sea birds and marine mammals(2020) Sonne, Christian; Siebert, Ursula; Gonnsen, Katharina; Treu, GabrieleHere we review contaminant exposure and related health effects in six selected Baltic key species. Sentinel species included are common eider, white-tailed eagle, harbour porpoise, harbour seal, ringed seal and grey seal. The review represents the first attempt of summarizing available information and baseline data for these biomonitoring key species exposed to industrial hazardous substances focusing on anthropogenic persistent organic pollutants (POPs). There was only limited information available for white-tailed eagles and common eider while extensive information exist on POP exposure and health effects in the four marine mammal species. Here we report organ-tissue endpoints (pathologies) and multiple biomarkers used to evaluate health and exposure of key species to POPs, respectively, over the past several decades during which episodes of significant population declines have been reported. Our review shows that POP exposure affects the reproductive system and survival through immune suppression and endocrine disruption, which have led to population-level effects on seals and white-tailed eagles in the Baltic. It is notable that many legacy contaminants, which have been banned for decades, still appear to affect Baltic wildlife. With respect to common eiders, changes in food composition, quality and contaminant exposure seem to have population effects which need to be investigated further, especially during the incubation period where the birds fast. Since new industrial contaminants continuously leak into the environment, we recommend continued monitoring of them in sentinel species in the Baltic, identifying possible effects linked to climate change, and modelling of population level effects of contaminants and climate change. © 2020 The AuthorsVeröffentlichung Ecological and spatial variations of legacy and emerging contaminants in white-tailed sea eagles from Germany: implications for prioritisation and future risk management(2022) Badry, Alexander; Gkotsis, Georgios; Treu, GabrieleThe increasing use of chemicals in the European Union (EU) has resulted in environmental emissions and wildlifeexposures. For approving a chemical within the EU, producers need to conduct an environmental risk assessment,which typically relies on data generated under laboratory conditions without considering the ecological andlandscape context. To address this gap and add information on emerging contaminants and chemical mixtures,we analysed 30 livers of white-tailed sea eagles (Haliaeetus albicilla) from northern Germany with highresolution-mass spectrometry coupled to liquid and gas chromatography for the identification of >2400 con-taminants. We then modelled the influence of trophic position (δ15N), habitat (δ13C) and landscape on chemicalresidues and screened for persistent, bioaccumulative and toxic (PBT) properties using an in silico model tounravel mismatches between predicted PBT properties and observed exposures. Despite having generally lowPBT scores, most detected contaminants were medicinal products with oxfendazole and salicylamide being mostfrequent. Chemicals of the Stockholm Convention such as 4,4â€2-DDE and PCBs were present in all samples belowtoxicity thresholds. Among PFAS, especially PFOS showed elevated concentrations compared to other studies. Incontrast, PFCA levels were low and increased with δ15N, which indicated an increase with preying on piscivorousspecies. Among plant protection products, spiroxamine and simazine were frequently detected with increasingconcentrations in agricultural landscapes. The in silico model has proven to be reliable for predicting PBTproperties for most chemicals. However, chemical exposures in apex predators are complex and do not solely relyon intrinsic chemical properties but also on other factors such as ecology and landscape. We therefore recom-mend that ecological contexts, mixture toxicities, and chemical monitoring data should be more frequentlyconsidered in regulatory risk assessments, e.g. in a weight of evidence approach, to trigger risk managementmeasures before adverse effects in individuals or populations start to manifest. © 2021 The AuthorsVeröffentlichung Current state of knowledge on biological effects from contaminants on arctic wildlife and fish(2019) Dietz, Rune; Letcher, Robert J.; Desforges, Jean-Pierre; Treu, GabrieleSince the last Arctic Monitoring and Assessment Programme (AMAP) effort to review biological effects of the ex-posure to organohalogen compounds (OHCs) in Arctic biota, there has been a considerable number of new Arcticeffect studies. Here, we provide an update on the state of the knowledge of OHC, and also include mercury, ex-posure and/or associated effects in key Arctic marine and terrestrial mammal and bird species as well as in fishby reviewing the literature published since the last AMAP assessment in 2010. We aimed at updating the knowl-edge of how single but also combined health effects are or can be associated to the exposure to single compoundsor mixtures of OHCs. We also focussed on assessing both potential individual as well as population health impactsusing population-specific exposure data post 2000. We have identified quantifiable effects on vitamin metabo-lism, immune functioning, thyroid and steroid hormone balances, oxidative stress, tissue pathology, and repro-duction. As with the previous assessment, a wealth of documentation is available for biological effects inmarine mammals and seabirds, and sentinel species such as the sledge dog and Arctic fox, but information for ter-restrial vertebrates and fish remain scarce. While hormones and vitamins are thoroughly studied, oxidativestress, immunotoxic and reproductive effects need further investigation. Depending on the species and popula-tion, some OHCs and mercury tissue contaminant burdens post 2000 were observed to be high enough to exceedputative risk threshold levels that have been previously estimated for non-target species or populations outsidethe Arctic. In this assessment, we made use of risk quotient calculations to summarize the cumulative effects ofdifferent OHC classes and mercury for which critical body burdens can be estimated for wildlife across the Arctic.As our ultimate goal is to better predict or estimate the effects of OHCs and mercury in Arctic wildlife at the in-dividual, population and ecosystem level, there remain numerous knowledge gaps on the biological effects of ex-posure in Arctic biota. These knowledge gaps include the establishment of concentration thresholds forindividual compounds as well as for realistic cocktail mixtures that in fact indicate biologically relevant, andnot statistically determined, health effects for specific species and subpopulations. Finally, we provide future per-spectives on understanding Arctic wildlife health using new in vivo, in vitro, and in silico techniques, and providecase studies on multiple stressors to show that future assessments would benefit from significant efforts to inte-grate human health, wildlife ecology and retrospective and forecasting aspects into assessing the biological ef-fects of OHC and mercury exposure in Arctic wildlife and fish. © 2019 The Authors.