Listen
8 Ergebnisse
Filter
Einstellungen
Suchergebnisse
Veröffentlichung Empfehlungen von Maßnahmen im Falle einer Grenzwertüberschreitung von Blei im Trinkwasser(2013) Meyer, Volker; Rapp, ThomasVeröffentlichung Blei im Trinkwasser(2013) Meyer, Volker; Rapp, ThomasVeröffentlichung Anforderungen an Materialien und Werkstoffe im Kontakt mit Trinkwasser(2014) Berger, Sabrina; Rapp, ThomasVeröffentlichung Round robin test for odour testing of migration waters(2015) Günther, Herbert; Rapp, ThomasFor a round robin test for EN 1420-1 (Odour assessment for organic materials in contact with drinking water) with 14 contributing laboratories from 10 European countries segments of a plastic pipe were sent to the laboratories which performed a migration test and an odour analysis of the migration waters (water that had contact with the organic material) according to the procedure described in the standard from 1999. In addition reference substances (Methyl tert-butyl ether, 1-butanol and hexanal) were investigated for their suitability to qualify the panels and the individual panellists. Methyl tert-butyl ether (MtBE) and 1-butanol proved to be suitable for this purpose, whereas hexanal showed a wide distribution of the individual odour threshold concentrations. Both possible testing options (unforced and forced choice) were performed and gave similar results. However, with respect to the qualification of the panellists and the data analysis the unforced choice procedure showed advantages. As human olfactory perception is used for the analysis, the reproducibility and the comparability between laboratories is of particular concern. For the pipe material the TON results of the different laboratories were in a range of ş1.5 dilutions based on a dilution factor of 2. This might be improved by taking the individual sensitivities of the panellists into account more strongly. Appropriate measures for the improvement of the test method appear to be the use of the proposed reference substances for the training of the panellists as well as the auditing and the selection of the panellists. The results of this round robin test are used in the revision process of the standard.Quelle: http://www.sciencedirect.comVeröffentlichung Implementation and evaluation of the water safety plan approach for buildings(2019) Rapp, Thomas; Rickert, Bettina; Schmidt, Isabelle; Schmoll, OliverThe World Health Organization promotes water safety plans (WSPs) - a risk-based management approach - for premise plumbing systems in buildings to prevent deterioration of drinking-water quality. Experience with the implementation of WSPs in buildings were gathered within a pilot project in Germany. The project included an evaluation of the feasibility and advantages of WSPs by all stakeholders who share responsibility in drinking-water safety. While the feasibility of the concept was demonstrated for all buildings, benefits reported by building operators varied. The more technical standards were complied with before implementing WSP, the less pronounced were the resulting improvements. In most cases, WSPs yielded an increased system knowledge and awareness for drinking-water quality issues. WSPs also led to improved operation of the premise plumbing system and provided benefits for surveillance authorities. A survey among the European Network of Drinking-Water Regulators on the existing legal framework regarding drinking-water safety in buildings exhibited that countries are aware of the need to manage risks in buildings' installations, but experience with WSP is rare. Based on the successful implementation and the positive effects of WSPs on drinking-water quality, we recommend the establishment of legal frameworks that require WSPs for priority buildings whilst accounting for differing conditions in buildings and countries. Quelle: https://iwaponline.comVeröffentlichung Contaminants migrating from crossed-linked polyethylene pipes and their effect on drinking water odour(2019) Kalweit, Cynthia; Stottmeister, Ernst; Rapp, ThomasThe formation potential of contaminants diffusing from cross-linked polyethylene (PE-X) pipes and their impact on the odour of drinking water was determined. Three types of PE-X material, Pe-Xa, PE-Xb and PE-Xc, were extensively assessed by performing migration tests following EN 1420 and EN 12873-1. Migration waters were analysed for their threshold odour number (TON). The same samples were investigated by two gas chromatography-mass spectrometry methods: screening and olfactometry. Most of the PE-X materials failed the German regulation of TON <2 for cold water and TON <4 for warm water. PE-Xb material caused the strongest odour and also released the highest amount of contaminants. Metilox, 7,9-di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione, 3,5-di-tert-butyl-4-hydroxybenzaldehyde and 2,6-di-tert-butyl-p-benzoquinone (2,6-DtBQ) were the most often detected substances leaching from the tested plastic materials. However, no odour was perceived for most of these substances. Methyl tert-butyl ether (MtBE) and 2-tert-butylphenol are believed to contribute to the sensory problem in the migration water among other substances such as tert-amyl methyl ether, 2,2,2,5-tetramethyltetrahydrofuran, toluene or xylene. In total ten specific descriptions characterized the odour of the individual contaminants: ethereal, fresh, solvent, sweet, fruity, floral, unsavoury, pungent, aromatic and chemical. Quelle: https://www.sciencedirect.comVeröffentlichung Quantification and stability assessment of 7,9-di.tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione leaching from cross-linked polyethylene pipes using gas and liquid chromatography(2023) Berger, Sabrina; Kalweit, Cynthia; Kämpfe, Alexander David; Rapp, ThomasThis study assesses the formation and stability of the water contaminant 7,9-di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione ([1]) which repeatedly occurs in the migration waters of cross-linked polyethylene (PE-X) pipes. In aqueous solution [1] is partially transformed to 3-(3,5-di-tert-butyl-1-hydroxy-4-oxo-2,5-cyclohexadien-1-yl)propionic acid ([2]). For a better understanding of the formation of [1] and its transformation into [2] an analytical method was established to allow the analysis of both species separately. Because of thermal instability [2] cannot be detected with GC-MS. Therefore, two methods were validated for a reliable and reproducible quantification: GC-MS for [1] and HPLC-MS/MS for both [1] and [2]. Comparative measurements of migration waters from PE-X pipes using GC-MS and HPLC-MS/MS methods showed that the concentrations of [1] detected with GC-MS corresponds to the sum of [1] and [2] measured with HPLC-MS/MS. In the migration waters [1] was detected in higher concentrations than [2]. The highest concentrations of [1], detected with GC-MS, were > 300 (micro)g/L. The longer the materials are stored without contact with water, the more [1] is measured in the migration waters. Most of the previous values reported in the literature for [1] were based on semi-quantification. Hence, we compared results of the semi-quantitative determination according to EN 15768 with those of a quantitative method with a standard. The results gained with the semi-quantitative method represent less than 50% of the quantified values for the amount leaching from the pipes, which means that the semi-quantification method according to EN 15768 leads to a significant underestimation of [1]. Finally, stability assessment showed that [1] developed an equilibrium with [2] under acidic conditions, whereas it will completely be transferred to [2] at pH 10. At pH 7, it takes more than 50 days for [1] to reach an equilibrium with [2]. However, at increasing the temperature to 60 ËÌC, [1] will be rapidly transformed into [2]. Besides [1] and [2], other currently unknown degradation products are formed. As there is no comprehensive toxicological assessment for both substances available today, our findings underline the need for regulatory consequences. © 2023 Elsevier Ltd. All rights reserved.Veröffentlichung Release of antioxidants and their degradation products from materials in contact with drinking water(2023) Berger, Sabrina; Kalweit, Cynthia; Kämpfe, Alexander David; Rapp, Thomas