Listen
2 Ergebnisse
Suchergebnisse
Veröffentlichung Fate, bioaccumulation and toxic effects of triclosan on a freshwater community - a mesocosm study(2021) Berghahn, Rüdiger; Contardo-Jara, Valeska; Feibicke, Michael; Meinecke, Stefan; Mohr, Silvia; Schmidt, RalfThe antibacterial agent triclosan (TCS) is added to many daily-used consumer products and can therefore reach the aquatic environment via treated wastewater and potentially harm aquatic ecosystems. A 120 days pond mesocosm study was conducted in order to investigate the fate of TCS in water and sediment, its bioaccumulative potential in different biota as well as the effects of TCS and its main transformation product methyl-triclosan (M-TCS) on plankton, periphyton, macrophytes, and benthos communities. TCS was dosed once each in six pond mesocosms (nominal concentrations: 0.12, 0.6, 3.5, 21, 130 and 778 (micro)g/L TCS, respectively) while two ponds served as controls. A concentration-dependent increase in the DT50 values from 5.0 to 15.0 and 7.5 to 16.3 days was observed for TCS in water and the whole pond system (water, sediment, biota), respectively. Consequently, the substance should be categorized as non-persistent. For TCS, the bioaccumulation factors (non steady-state conditions, BAFnssc) in Lymnaea stagnalis, Myriophyllum spicatum and periphyton were below the critical limit of 2000, above which a substance is classified as bioaccumulative. In contrast, a BAFnssc value of >10,000 was found for M-TCS in L. stagnalis, denoting that M-TCS definitely falls under this classification. Although strong effects on freshwater communities could only be observed in the highest TCS treatments, some periphyton species, such as Oedogonium spp., reacted very sensitive to TCS with an EC50 (time weighted average, 28 d) of 0.3 (micro)g/L TCS. Considering the high bioaccumulative potential of M-TCS in combination with the observed effects of TCS at low doses suggests that the use of TCS, and therefore its release into the environment, should cease. © 2021 The AuthorsVeröffentlichung Effects of a realistic pesticide spraying sequence for apple crop on stream communities in mesocosms: negligible or notable?(2023) Duquesne, Sabine; Feibicke, Michael; Frische, Tobias; Gergs, René; Meinecke, Stefan; Sahm, René; Mohr, SilviaBackground Several large-scale studies revealed impacts and risks for aquatic communities of small rural lakes and streams due to pesticides in agricultural landscapes. It appears that pesticide risk assessment based on single products does not offer sufficient protection for non-target organisms, which are exposed repeatedly to pesticide mixtures in the environment. Therefore, a comprehensive stream mesocosm study was conducted in order to investigate the potential effects of a realistic spraying sequence for conventional orchard farmed apples on a stream community using pesticides at their regulatory acceptable concentrations (RACs). Eight 74-m-long stream mesocosms were established with water, sand, sediment, macrophytes, plankton and benthic macroinvertebrates. In total, nine fungicidal, four herbicidal and four insecticidal pesticides were applied in four of the eight stream mesocosms on 19 spraying event days in the period from April to July while the remaining four stream mesocosms served as controls. The community composition, the abundance of benthos, periphyton and macrophytes, the emergence of insects, physico-chemical water parameters, and drift measurements of aquatic invertebrates were measured. Results The pesticide spraying sequence induced significant effects on invertebrates, periphyton, and macrophytes as well as on the water ion composition especially in the second half of the experiment. It was not possible to relate the observed effects on the community to specific pesticides applied at certain time points and their associated toxic pressure using the toxic unit approach. The most striking result was the statistically significant increase in variation of population response parameters of some taxa in the treated mesocosms compared to the controls. This inter-individual variation can be seen as a general disturbance measure for the ecosystem. Conclusions The pesticide spraying sequence simulated by using RAC values had notable effects on the aquatic stream community in the conducted mesocosm study. The results indicate that the current risk assessment for pesticides may not ensure a sufficient level of protection to the field communities facing multiple pesticide entries due to spraying sequences and other combined stress. Hence, there is still room for improvement regarding the prospective risk assessment of pesticides to further reduce negative effects on the environment. © The Author(s) 2023