Listen
2 Ergebnisse
Suchergebnisse
Veröffentlichung Making use of apex predator sample collections: an integrated workflow for quality assured sample processing, analysis and digital sample freezing of archived samples(2022) Badry, Alexander; Rüdel, Heinz; Göckener, Bernd; Koschorreck, Jan; Treu, GabrieleUsing monitoring data from apex predators for chemicals risk assessment can provide important information on bioaccumulating as well as biomagnifying chemicals in food webs. A survey among European institutions involved in chemical risk assessment on their experiences with apex predator data in chemical risk assessment revealed great interest in using such data. However, the respondents indicated that constraints were related to expected high costs, lack of standardisation and harmonised quality criteria for exposure assessment, data access, and regulatory acceptance/application. During the Life APEX project, we demonstrated that European sample collections (i.e. environmental specimen banks (ESBs), research collection (RCs), natural history museums (NHMs)) archive a large variety of biological samples that can be readily used for chemical analysis once appropriate quality assurance/control (QA/QC) measures have been developed and implemented. We therefore issued a second survey on sampling, processing and archiving procedures in European sample collections to derive key quality QA/QC criteria for chemical analysis. The survey revealed great differences in QA/QC measures between ESBs, NHMs and RCs. Whereas basic information such as sampling location, date and biometric data were mostly available across institutions, protocols to accompany the sampling strategy with respect to chemical analysis were only available for ESBs. For RCs, the applied QA/QC measures vary with the respective research question, whereas NHMs are generally less aware of e.g. chemical cross-contamination issues. Based on the survey we derived key indicators for assessing the quality of biota samples that can be easily implemented in online databases. Furthermore, we provide a QA/QC workflow not only for sampling and processing but also for the chemical analysis of biota samples. We focussed on comprehensive analytical techniques such as non-target screening and provided insights into subsequent storage of high-resolution chromatograms in online databases (i.e. digital sample freezing platform) to ultimately support chemicals risk assessment. © 2022 The Authors.Veröffentlichung Using environmental monitoring data from apex predators for chemicals management: towards harmonised sampling and processing of archived wildlife samples to increase the regulatory uptake of monitoring data in chemicals management(2022) Slobodnik, Jaroslav; Badry, Alexander; Alygizakis, Nikiforos A.; Claßen, Daniela; Koschorreck, Jan; Treu, GabrieleMonitoring data from apex predators were key drivers in the development of early chemicals legislations due to the population declines of many species during the twentieth century, which was linked to certain persistent organic pollutants (POPs). Besides triggering the development of global treaties (e.g. the Stockholm Convention), chemical monitoring data from apex predators have been particularly important for identifying compounds with bioaccumulative properties under field conditions. Many apex predators are protected species and only a few environmental specimen banks (ESBs) regularly collect samples as many ESBs were established during the 1980-1990s when apex predators were scarce. Today, many POPs have been banned, which contributed to the recovery of many apex predator populations. As a consequence, apex predator samples are now available in research collections (RCs) and natural history museums (NHMs). These samples can be used for routine analysis as well as for screening studies using novel analytical techniques and advanced data treatment workflows, such as suspect and non-target screening. The LIFE APEX project has demonstrated how these samples can be used in a cost-efficient way to generate data on legacy compounds and contaminants of emerging concern. Furthermore, it has described quality assurance/control measures to ensure high quality and comparable data, with a view to uses in chemicals risk assessment and management. To increase the visibility of available sample collections and monitoring data from apex predators we developed accessible online database systems. Additionally, the acquired high-resolution mass spectrometric data were stored in a digital sample freezing platform that allows retrospective suspect screening in previously analysed samples for substances that may be of concern/under assessment in the future. These databases provide open access to a wide range of chemical data, for use by regulators, researchers, industry and the general public, and contribute to a stronger link between science and policy. © The Author(s) 2022