Aufsätze

Dauerhafte URI für die Sammlunghttps://openumwelt.de/handle/123456789/6

Listen

Suchergebnisse

Gerade angezeigt 1 - 5 von 5
  • Veröffentlichung
    Bringing together raptor collections in Europe for contaminant research and monitoring in relation to chemicals regulations
    (2017) Movalli, Paola; Dekker, René; Koschorreck, Jan; Treu, Gabriele
    Raptors are good sentinels of environmental contamination and there is good capability for raptor biomonitoring in Europe. Raptor biomonitoring can benefit from natural history museums (NHMs), environmental specimen banks (ESBs) and other collections (e.g. specialist raptor specimen collections). Europe̷s NHMs, ESBs and other collections hold large numbers of raptor specimens and samples, covering long periods of time. These collections are potentially a valuable resource for contaminant studies over time and space. There are strong needs to monitor contaminants in the environment to support EU and national chemical management. However, data on raptor specimens in NHMs, ESBs and other collections are dispersed, few are digitised, and they are thus not easy to access. Specimen coverage is patchy in terms of species, space and time. Contaminant research with raptors would be facilitated by creating a framework to link relevant collections, digitising all collections, developing a searchable meta-database covering all existing collections, making them more visible and accessible for contaminant research. This would also help identify gaps in coverage and stimulate specimen collection to fill gaps in support of prioritised contaminant monitoring. Collections can further support raptor biomonitoring by making samples available for analysis on request. Quelle: https://link.springer.com/
  • Veröffentlichung
    Hg isotopic composition of one-year-old spruce shoots: Application to long-term Hg atmospheric monitoring in Germany
    (2021) Yamakawa, Akane; Amouroux, David; Fettig, Ina; Tessier, Emmanuel; Koschorreck, Jan
    The Hg isotopic composition of 1-year-old Norway spruce (Picea abies) shoots collected from Saarland cornurbation Warndt, Germany, since 1985 by the German Environmental Specimen Bank, were measured for a better understanding of the temporal trends of Hg sources. The isotopic data showed that Hg was mainly taken up as gaseous element mercury (GEM) and underwent oxidation in the spruce needles; this led to a significant decrease in the δ202Hg compared with the atmospheric Hg isotopic composition observed for deciduous leaves and epiphytic lichens. Observation of the odd mass-independent isotopic fractionation (MIF) indicated that ÎÌ199Hg and ÎÌ201Hg were close to but slightly lower than the actual values recorded from the atmospheric measurement of the GEM isotopic composition in non-contaminated sites in U.S. and Europe, whereas observation of the even-MIF indicated almost no differences for ÎÌ200Hg. This confirmed that GEM is a major source of Hg accumulation in spruce shoots. Interestingly, the Hg isotopic composition in the spruce shoots did not change very significantly during the study period of >30 years, even as the Hg concentration decreased significantly. Even-MIF (ÎÌ200Hg) and mass-dependent fractionation (MDF) (δ202Hg) of the Hg isotopes exhibited slight decrease with time, whereas odd-MIF did not show any clear trend. These results suggest a close link between the long-term evolution of GEM isotopic composition in the air and the isotopic composition of bioaccumulated Hg altered by mass-dependent fraction in the spruce shoots. © 2021 The Authors
  • Veröffentlichung
    The role of natural science collections in the biomonitoring of environmental contaminants in apex predators in support of the EU's zero pollution ambition
    (2022) Movalli, Paola; Koschorreck, Jan; Treu, Gabriele; Claßen, Daniela
    The chemical industry is the leading sector in the EU in terms of added value. However, contaminants pose a major threat and significant costs to the environment and human health. While EU legislation and international conventions aim to reduce this threat, regulators struggle to assess and manage chemical risks, given the vast number of substances involved and the lack of data on exposure and hazards. The European Green Deal sets a "zero pollution ambition for a toxic free environment" by 2050 and the EU Chemicals Strategy calls for increased monitoring of chemicals in the environment. Monitoring of contaminants in biota can, inter alia: provide regulators with early warning of bioaccumulation problems with chemicals of emerging concern; trigger risk assessment of persistent, bioaccumulative and toxic substances; enable risk assessment of chemical mixtures in biota; enable risk assessment of mixtures; and enable assessment of the effectiveness of risk management measures and of chemicals regulations overall. A number of these purposes are to be addressed under the recently launched European Partnership for Risk Assessment of Chemicals (PARC). Apex predators are of particular value to biomonitoring. Securing sufficient data at European scale implies large-scale, long-term monitoring and a steady supply of large numbers of fresh apex predator tissue samples from across Europe. Natural science collections are very well-placed to supply these. Pan-European monitoring requires effective coordination among field organisations, collections and analytical laboratories for the flow of required specimens, processing and storage of specimens and tissue samples, contaminant analyses delivering pan-European data sets, and provision of specimen and population contextual data. Collections are well-placed to coordinate this. The COST Action European Raptor Biomonitoring Facility provides a well-developed model showing how this can work, integrating a European Raptor Biomonitoring Scheme, Specimen Bank and Sampling Programme. Simultaneously, the EU-funded LIFE APEX has demonstrated a range of regulatory applications using cutting-edge analytical techniques. PARC plans to make best use of such sampling and biomonitoring programmes. Collections are poised to play a critical role in supporting PARC objectives and thereby contribute to delivery of the EU's zero-pollution ambition. © The Author(s) 2022
  • Veröffentlichung
    Long-term archival of environmental samples empowers biodiversity monitoring and ecological research
    (2022) Zizka, Vera M. A.; Koschorreck, Jan; Khan, Collins C.
    Human-induced biodiversity loss and changes in community composition are major challenges of the present time, urgently calling for comprehensive biomonitoring approaches to understand system dynamics and to inform policy-making. In this regard, molecular methods are increasingly applied. They provide tools for fast and high-resolution biodiversity assessments and can also focus on population dynamics or functional diversity. If samples are stored under appropriate conditions, this will enable the analysis of DNA, but also RNA and proteins from tissue or from non-biological substrates such as soil, water, or sediments, so-called environmental DNA (eDNA) or eRNA. Until now, most biodiversity studies using molecular methods rely on recent sampling events, although the benefit of analyzing long-time series is obvious. In this context Environmental Specimen Banks (ESBs) can play a crucial role, supplying diverse and well-documented samples collected in periodically repeated sampling events, and following standardized protocols. Mainly assembled for integrative monitoring of chemical compounds, ESB collections are largely accessible to third parties and can in principle be used for molecular analysis. While ESBs hold great potential for the standardized long-time storage of environmental samples, the cooperation with Biodiversity Biobanks as scientific collections guarantees the long-time storage of nucleotide (DNA, RNA) extracts together with links to analytical results and metadata. The present contribution aims to raise the awareness of the biodiversity research community regarding the high-quality samples accessible through ESBs, encourages ESBs to collect and store samples in DNA-friendly ways, and points out the high potential of combining DNA-based approaches with monitoring chemicals and other environmental stressors. Quelle: https://enveurope.springeropen.com/
  • Veröffentlichung
    Levels and temporal trends of Trifluoroacetate (TFA) in archived plants: evidence for increasing emissions of gaseous TFA precursors over the last decades
    (2022) Freeling, Finnian; Scheurer, Marco; Hoffmann, Gabriele; Koschorreck, Jan
    Trifluoroacetate (TFA) is a highly mobile and persistent compound that occurs ubiquitously in the environment. Results from previous studies suggested an increase in the atmospheric deposition of TFA in the Northern Hemisphere starting in the 1990s. Due to its physicochemical properties, TFA can be efficiently taken up and accumulated by vascular plants. Consequently, plants could serve as a biomonitoring tool to evaluate the presence of TFA in the terrestrial environment. This is the first study which describes the concentrations and temporal trends of TFA in biota by analyzing archived leaf samples of various tree species from the German Environmental Specimen Bank (observation period: 1989-2020). Samples from different locations of the same species were each in a similar concentration range. The highest concentrations (up to ca. 1000 mikrog/kg dry weight) were found in Lombardy poplar (Populus nigra "Italica") leaves. A statistically significant positive trend in the TFA concentration within the study period was found for most species/sites, which is likely the result of both bioaccumulation as well as increasing emissions of gaseous TFA precursors over the last three decades. These results contribute to the current discussion on the regulation of per- and polyfluoroalkyl substances (PFAS) to protect human and environmental health. Quelle: www.pubs.acs.org