Aufsätze

Dauerhafte URI für die Sammlunghttps://openumwelt.de/handle/123456789/6

Listen

Suchergebnisse

Gerade angezeigt 1 - 4 von 4
  • Veröffentlichung
    Research meetings must be more sustainable
    (2020) Sanz-Cobena, Alberto; Alessandrini, Roberta; Bodirsky, Benjamin Leon; Geupel, Markus
  • Veröffentlichung
    Focus on reactive nitrogen and the UN sustainable development goals
    (2022) Winiwarter, Wilfried; Amon, Barbara; Bodirsky, Benjamin Leon; Geupel, Markus
    The scientific evidence assembled in this Focus Collection on 'Reactive nitrogen and the UN sustainable development goals' emphasizes the relevance of agriculture as a key sector for nitrogen application as well as its release to the environment and the observed impacts. Published work proves the multiple connections and their causality, and presents pathways to mitigate negative effects while maintaining the benefits, foremost the production of food to sustain humanity. Providing intersections from field to laboratory studies and to modelling approaches, across multiple scales and for all continents, the Collection displays an overview of the state of nitrogen science in the early 21st century. Extending science to allow for policy-relevant messages renders the evidence provided a valuable basis for a global assessment of reactive nitrogen. © Authors
  • Veröffentlichung
    Calculation of a food consumption nitrogen footprint for Germany
    (2021) Klement, Laura; Bach, Martin; Geupel, Markus
    Reactive nitrogen (Nr) that is released to the environment has several negative implications for the atmosphere, hydrosphere, biodiversity and human health. A nitrogen (N) footprint is a measure that can help to assess and communicate the impact of personal lifestyle and consumption choices regarding their influences on Nr losses. The N-Calculator tool was developed to estimate this footprint. However, underlying loss factors for the food sector in the N-Calculator rely on data from the US, for which the calculator was originally established. Since the conditions in agriculture and the food industry differ significantly between the US and other countries, and the fact that the food sector is considered the main source of Nr losses in the N-Calculator, a revision of the N-Calculator is required if applied to other countries. Here we present a revised N-Calculator for Germany that is based on German food production data. In this study, virtual nitrogen factors describe the losses of nitrogen in a supply chain. Losses were calculated for 20 plant-based products, 17 feed materials, 18 compound feeds and 14 animal-based products. The N footprint varies considerably between products. While plant-based products amount to a weighted average of 3.4 g N loss per kg product, animal-based products cause significantly higher losses with 40.5 g N loss per kg. Overall, the average N footprint for the German consumer is calculated to be at 9.94 kg per capita and year. To validate the results, the individual categories were scaled up to the national level and then compared with statistical data on N flows in Germany. In general, the results showed good agreement with key production figures and the overall N budget for Germany. Furthermore, some improvements are proposed to increase the informative value and user acceptance of an N-Calculator. © 2021 The Author(s)
  • Veröffentlichung
    National nitrogen budget for Germany
    (2021) Häußermann, Uwe; Bach, Martin; Fuchs, Stephan; Geupel, Markus
    Emissions of reactive nitrogen (Nr) give rise to a wide range of environmental problems. Nitrogen budgets for various systems and on different scales are an established tool to quantify the sources and fate of Nr. The national nitrogen budget (NNB) for Germany calculates the nitrogen flows for eight pools: Atmosphere, Energy and Fuels, Material and Products in Industry, Humans and Settlements, Agriculture, Forest and Semi-natural Vegetation, Waste, and Hydrosphere, as well as for the transboundary N-flows. In Germany, in total 6,275 kt Nr a-1 has been introduced into the nitrogen cycle annually (mean 2010 to 2014), of which 43% stem from ammonia synthesis. Domestic extraction and import of nitrogenous fossil fuels (lignite, coal, crude oil) releases another 2,335 kt Nr a-1. Import of food, feed and materials contributes 745 kt Nr a-1, while biological N fixation converts 308 kt Nr a-1 into organically bound nitrogen. In terms of Nr sinks, the combustion and denoxing of fuels and the refining of crude oil converts 2,594 kt Nr a-1 to N2. In waters, soils, and wastewater treatment plants, denitrification leads to the release of 1,107 kt Nr a-1 as N2. Via the atmosphere and hydrosphere, Germany exports 755 kt Nr a-1 to neighbouring countries and into coastal waters. On balance, Germany releases 1,627 kt Nr a-1 annually to the environment. However, the NNB as a whole and the individual pool balances involve substantial uncertainties, which have to be considered when interpreting the results. ©2021 The Author(s)