Aufsätze

Dauerhafte URI für die Sammlunghttps://openumwelt.de/handle/123456789/6

Listen

Suchergebnisse

Gerade angezeigt 1 - 2 von 2
  • Veröffentlichung
    The auxin herbicide mecoprop-P in new light: Filling the data gap for dicotyledonous macrophytes
    (2021) Feibicke, Michael; Gergs, René; Sahm, René; Hönemann, Linda; Kusebauch, Björn; Mohr, Silvia; Périllon, Cécile
    Mecoprop-P (MCPP-P) is an auxin herbicide which has been used against dicotyledonous weed plants since the 1980s. While fate and monitoring data of MCPP-P in the aquatic environment revealing concentrations up to 103 ÎÌg/L in freshwaters are well documented, only very few toxicity data and no studies with dicotyledonous macrophytes have been published in open literature so far. To fill up this essential data gap, a microcosm study was conducted in order to test the sensitivity of nine dicotyledonous and one Ceratophyllales macrophyte species. The plant species were exposed to seven MCPP-P concentrations ranging from 8 to 512 (micro)g/L for 21/22 days in one microcosm per concentration, and two further microcosms served as controls. Plant preparation was adapted to each species and endpoints were measured to calculate growth rates. Data were generated to obtain effect concentrations (ECX) which then were used to construct species sensitivity distribution curves (SSD). Eight species proved to be sensitive to MCPP-P in the tested concentration range with EC50 values ranging from 46.9 (micro)g/L for Ranunculus aquatilis to 656.4 (micro)g/L MCPP-P for Ludwigia repens. Taking the EC50 values of this study and published data for autotrophic organisms into account, a hazard concentration (HC5) of 2.7 (micro)g/L was derived from the SSD curve, while an SSD curve without dicotyledonous macrophytes resulted in an about 100 times higher HC5 (360.8 (micro)g/L MCCP-P). This confirms that a re-evaluation for old auxin herbicides by including dicotyledonous test species into the environmental risk assessment may be indicated. Furthermore, the use of MCPP-P in bitumen felts as protection against rooting by plants is not in the focus of any risk regulation so far. This application, however, can lead to high run-off concentrations that can enter surface waters easily, exceeding the new regulatory acceptable concentration values. © 2021 The Authors
  • Veröffentlichung
    Effects of a realistic pesticide spraying sequence for apple crop on stream communities in mesocosms: negligible or notable?
    (2023) Duquesne, Sabine; Feibicke, Michael; Frische, Tobias; Gergs, René; Meinecke, Stefan; Sahm, René; Mohr, Silvia
    Background Several large-scale studies revealed impacts and risks for aquatic communities of small rural lakes and streams due to pesticides in agricultural landscapes. It appears that pesticide risk assessment based on single products does not offer sufficient protection for non-target organisms, which are exposed repeatedly to pesticide mixtures in the environment. Therefore, a comprehensive stream mesocosm study was conducted in order to investigate the potential effects of a realistic spraying sequence for conventional orchard farmed apples on a stream community using pesticides at their regulatory acceptable concentrations (RACs). Eight 74-m-long stream mesocosms were established with water, sand, sediment, macrophytes, plankton and benthic macroinvertebrates. In total, nine fungicidal, four herbicidal and four insecticidal pesticides were applied in four of the eight stream mesocosms on 19 spraying event days in the period from April to July while the remaining four stream mesocosms served as controls. The community composition, the abundance of benthos, periphyton and macrophytes, the emergence of insects, physico-chemical water parameters, and drift measurements of aquatic invertebrates were measured. Results The pesticide spraying sequence induced significant effects on invertebrates, periphyton, and macrophytes as well as on the water ion composition especially in the second half of the experiment. It was not possible to relate the observed effects on the community to specific pesticides applied at certain time points and their associated toxic pressure using the toxic unit approach. The most striking result was the statistically significant increase in variation of population response parameters of some taxa in the treated mesocosms compared to the controls. This inter-individual variation can be seen as a general disturbance measure for the ecosystem. Conclusions The pesticide spraying sequence simulated by using RAC values had notable effects on the aquatic stream community in the conducted mesocosm study. The results indicate that the current risk assessment for pesticides may not ensure a sufficient level of protection to the field communities facing multiple pesticide entries due to spraying sequences and other combined stress. Hence, there is still room for improvement regarding the prospective risk assessment of pesticides to further reduce negative effects on the environment. © The Author(s) 2023