Listen
2 Ergebnisse
Suchergebnisse
Veröffentlichung Human biomonitoring of per- and polyfluoroalkyl substances in German blood plasma samples from 1982 to 2019(2020) Göckener, Bernd; Bücking, Mark; Kolossa-Gehring, Marike; Weber, TillThe findings of per- and polyfluoroalkyl substances (PFAS) in humans and the environment all over the world have raised concerns and public awareness for this group of man-made chemicals. In the last three decades, this led to different regulatory restrictions for specific PFAS as well as shifts in the production and usage of these substances. In this study, we analyzed the PFAS levels of 100 human blood plasma samples collected from 2009 to 2019 for the German Environmental Specimen Bank (ESB) to further elucidate the time course of exposure towards this substance group as shown by Schröter-Kermani et al., (2013) with samples from 1982 to 2010. A spectrum of 37 PFAS, including perfluorocarboxylic (PFCA) and -sulfonic acids (PFSA) as well as potential precursors and substitutes like ADONA, GenX or F-53B was analyzed by UHPLC coupled with high-resolution mass spectrometry. Validation was successful for 33 of the substances. The two legacy substances perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) were detected in every sample of the 2009-2019 dataset and showed the highest concentrations with ranges of 0.27-14.0 ng/mL and 1.21-14.1 ng/mL, respectively. A significant portion of total PFOS analytes was present as branched isomers (mean: 34 +/- 7%). High detection frequencies of 95% and 82% were also found for perfluorohexane sulfonic acid (PFHxS) and perfluorononanoic acid (PFNA), respectively, but in lower concentrations (PFHxS:Veröffentlichung Environmental specimen banks and the European Green Deal(2022) Fliedner, Annette; Rüdel, Heinz; Göckener, Bernd; Koschorreck, JanThe study highlights the potential of Environmental Specimen Banks (ESBs) for implementing the Zero Pollution Ambition and the Biodiversity Strategy of the European Green Deal. By drawing on recent monitoring studies of European ESBs, we illustrate the role ESBs already play in assessing the state of ecosystems in Europe and how they help to make developments over time visible. The studies reveal the ubiquitous presence of per- and polyfluoroalkyl substances, halogenated flame retardants, chlorinated paraffins, plasticizers, cyclic volatile methyl siloxanes, UV-filters, pharmaceuticals, and microplastics in the European environment. Temporal trends demonstrate the effectiveness of European regulations on perfluorooctane sulfonic acid, pentabrominated diphenylethers and diethylhexyl phthalate, but also point to the rise of substitutes such as non-phthalate plasticizers and short-chain perfluoroalkyl substances. Other studies are wake-up calls indicating the emergence of currently unregulated compounds such as long-chain chlorinated paraffins. Ecological studies show temporal trends in biometric parameters and stable isotope signatures that suggest long-term changes in environmental conditions. Studies on biodiversity of ecosystems using environmental DNA are still in their beginnings, but here too there is evidence of shifts in community composition that can be linked to changing environmental conditions. This review demonstrates the value of ESBs (a) for describing the status of the environment, (b) for monitoring temporal changes in environmental pollution and the ecologic condition of ecosystems and thereby (c) for supporting regulators in prioritizing their actions towards the objectives of the Green Deal. © 2022 Elsevier