Aufsätze

Dauerhafte URI für die Sammlunghttps://openumwelt.de/handle/123456789/6

Listen

Suchergebnisse

Gerade angezeigt 1 - 3 von 3
  • Veröffentlichung
    Cyanobacterial blooms. Ecology, prevention, mitigation and control: Editorial to a CYANOCOST Special Issue
    (2016) Ibelings, Bastiaan W.; Fastner, Jutta; Bormans, Myriam; Visser, Petra M.
    This is the Editorial to a Special Issue entitled "Cyanobacterial blooms. Ecology, prevention, mitigation and controlŁ. The Special Issue is a product of a European COST Action, CYANOCOST. In this Special Issue, contributions describe methods currently available for the management of cyanobacterial blooms, a key issue threatening the ecological functioning of lakes and the ecosystem services they provide . Contributions start with a section on the prevention of blooms, through the restriction of nutrient availability for cyanobacterial development at three levels: (1) in the catchment, (2) at the inflow to the lake and (3) in-lake methods, including nutrient release from the sediment. Then follows a section on control of blooms where blooms could be formed in the lake, but the chosen treatment restricts cyanobacterial growth to a level where risks and negative effects are minimal, e.g., artificial mixing, flushing or biomanipulation. The Special Issue continues with contributions on mitigation where blooms do develop, but physical and chemical methods mitigate the negative effects. For effective control key traits of the dominant cyanobacteria, characteristics of the lake system and an adequate design of the control method must come together. Each contribution answers questions like: what is the proposed or proven working mechanism of a given method? What have been the successes and failures? What are the reasons for success or failure? How is success linked to characteristics of the waterbody being treated? The Special Issue is concluded with contributions aiming at social and political aspects of bloom management .
    Quelle: http://link.springer.com
  • Veröffentlichung
    CYANOCOST special issue on cyanobacterial blooms: synopsis̶a critical review of the management options for their prevention, control and mitigation
    (2016) Ibelings, Bastiaan W.; Bormans, Myriam; Fastner, Jutta; Visser, Petra M.
    Nuisance, toxic cyanobacterial blooms are a persistent and globally expanding problem. Prevention of blooms requires that external and internal sources of nutrients are managed to levels where development of cyanobacterial blooms is restricted. Control of blooms, in which their presence is reduced to a level where they no longer pose a risk through additional measures such as biomanipulation or artificial mixing, demands that three elements come together: (1) understanding of the key ecological traits of the dominant cyanobacteria taxa, (2) system analysis of the lake, in particular its morphometry, water and nutrient balance, (3) adequate design and execution of the management methods of choice. All three elements are important for choosing effective management interventions and predicting their outcome. Mitigation of blooms reduces the risks and harmful effects of blooms if they cannot be prevented or sufficiently controlled, methods such as harvesting of surface scums or application of cyanocides may be used in those cases where water quality improvement is urgent. Ultimately, managing cyanobacterial blooms is most effective in the context of developing a Water Safety Plan. This is a risk assessment and management approach developed by the World Health Organization and provides a platform for bringing together the stakeholders who have a say about activities in the catchment causing eutrophication. Together, they can develop and implement control measures in the chain from catchment to drinking-water offtake which effectively mitigate eutrophication and thus protect humans and the lake ecosystem services they rely on from effects of toxic cyanobacteria.
    Quelle: http://link.springer.com
  • Veröffentlichung
    Cyanobacteria and cyanotoxins in a changing environment: concepts, controversies, challenges
    (2021) Chorus, Ingrid; Fastner, Jutta; Welker, Martin
    Concern is widely being published that the occurrence of toxic cyanobacteria is increasing in consequence of climate change and eutrophication, substantially threatening human health. Here, we review evidence and pertinent publications to explore in which types of waterbodies climate change is likely to exacerbate cyanobacterial blooms; whether controlling blooms and toxin concentrations requires a balanced approach of reducing not only the concentrations of phosphorus (P) but also those of nitrogen (N); how trophic and climatic changes affect health risks caused by toxic cyanobacteria. We propose the following for further discussion: (i) Climate change is likely to promote blooms in some waterbodies - not in those with low concentrations of P or N stringently limiting biomass, and more so in shallow than in stratified waterbodies. Particularly in the latter, it can work both ways - rendering conditions for cyanobacterial proliferation more favourable or less favourable. (ii) While N emissions to the environment need to be reduced for a number of reasons, controlling blooms can definitely be successful by reducing only P, provided concentrations of P can be brought down to levels sufficiently low to stringently limit biomass. Not the N:P ratio, but the absolute concentration of the limiting nutrient determines the maximum possible biomass of phytoplankton and thus of cyanobacteria. The absolute concentrations of N or P show which of the two nutrients is currently limiting biomass. N can be the nutrient of choice to reduce if achieving sufficiently low concentrations has chances of success. (iii) Where trophic and climate change cause longer, stronger and more frequent blooms, they increase risks of exposure, and health risks depend on the amount by which concentrations exceed those of current WHO cyanotoxin guideline values for the respective exposure situation. Where trophic change reduces phytoplankton biomass in the epilimnion, thus increasing transparency, cyanobacterial species composition may shift to those that reside on benthic surfaces or in the metalimnion, changing risks of exposure. We conclude that studying how environmental changes affect the genotype composition of cyanobacterial populations is a relatively new and exciting research field, holding promises for understanding the biological function of the wide range of metabolites found in cyanobacteria, of which only a small fraction is toxic to humans. Overall, management needs case-by-case assessments focusing on the impacts of environmental change on the respective waterbody, rather than generalisations. © 2021 by the authors