Aufsätze

Dauerhafte URI für die Sammlunghttps://openumwelt.de/handle/123456789/6

Listen

Suchergebnisse

Gerade angezeigt 1 - 2 von 2
  • Veröffentlichung
    Fast identification of microplastics in complex environmental samples by a thermal degradation method
    (2017) Dümichen, Erik; Bannick, Claus Gerhard; Eisentraut, Paul; Barthel, Anne-Kathrin
    In order to determine the relevance of microplastic particles in various environmental media, comprehensive investigations are needed. However, no analytical method exists for fast identification and quantification. At present, optical spectroscopy methods like IR and RAMAN imaging are used. Due to their time consuming procedures and uncertain extrapolation, reliable monitoring is difficult. For analyzing polymers Py-GC-MS is a standard method. However, due to a limited sample amount of about 0.5 mg it is not suited for analysis of complex sample mixtures like environmental samples. Therefore, we developed a new thermoanalytical method as a first step for identifying microplastics in environmental samples. A sample amount of about 20 mg, which assures the homogeneity of the sample, is subjected to complete thermal decomposition. The specific degradation products of the respective polymer are adsorbed on a solid-phase adsorber and subsequently analyzed by thermal desorption gas chromatography mass spectrometry. For certain identification, the specific degradation products for the respective polymer were selected first. Afterwards real environmental samples from the aquatic (three different rivers) and the terrestrial (bio gas plant) systems were screened for microplastics. Mainly polypropylene (PP), polyethylene (PE) and polystyrene (PS) were identified for the samples from the bio gas plant and PE and PS from the rivers. However, this was only the first step and quantification measurements will follow. © 2017 Elsevier Ltd.
  • Veröffentlichung
    Two birds with one stone - fast and simultaneous analysis of microplastics
    (2018) Eisentraut, Paul; Dümichen, Erik; Ruhl, Aki Sebastian
    Analysis of microplastic particles in environmental samples needs sophisticated techniques and is time intensive due to sample preparation and detection. Alternatives to the most common (micro-) spectroscopic techniques, Fourier transform infrared and Raman spectroscopy, are thermoanalytical methods, in which specific decomposition products can be analyzed as marker compounds for different kinds of plastic types and mass contents. Thermal extraction desorption gas chromatography-mass spectrometry allows the fast identification and quantification of MP in environmental samples without sample preparation. Whereas to date only the analysis of thermoplastic polymers has been realized, this is the first time that even the analysis of tire wear (TW) content in environmental samples has been possible. Various marker compounds for TW were identified. They include characteristic decomposition products of elastomers, antioxidants, and vulcanization agents. Advantages and drawbacks of these marker substances were evaluated. Environmental samples from street runoff were exemplarily investigated, and the results are presented. © 2018 American Chemical Society.