Aufsätze

Dauerhafte URI für die Sammlunghttps://openumwelt.de/handle/123456789/6

Listen

Suchergebnisse

Gerade angezeigt 1 - 2 von 2
  • Veröffentlichung
    Fatal neurotoxicosis in dogs associated with tychoplanktic, anatoxin-a producing tychonema sp. in mesotrophic Lake Tegel, Berlin
    (2018) Beulker, Camilla; Chorus, Ingrid; Fastner, Jutta
    In May 2017, at least 12 dogs showed signs of acute neurotoxicosis after swimming in or drinking from Lake Tegel, a mesotrophic lake in Berlin, Germany, and several of the affected dogs died shortly afterwards despite intensive veterinary treatment. Cyanobacterial blooms were not visible at the water surface or the shorelines. However, detached and floating water moss (Fontinalis antipyretica) with high amounts of Tychonema sp., a potential anatoxin-a (ATX) producing cyanobacterium, was found near the beaches where the dogs had been swimming and playing. Necropsies of two of the dogs revealed no specific lesions beside the anamnestic neurotoxicosis. ATX was detected in concentrations up to 8700 Ìg Lâ Ì1 in the stomach contents, while other (neuro)toxic substances were not found. In the aqueous fraction of Fontinalis/Tychonema clumps sampled after the casualties, ATX was found in concentrations up to 1870 Ìg Lâ Ì1. This is the first report of a dense population of Tychonema sp. in stands of Fontinalis resulting in high ATX contents. This case emphasizes the need for further investigation of potentially toxic, non-bloom forming cyanobacteria in less eutrophic water bodies and underlines the novel challenge of developing appropriate surveillance schemes for respective bathing sites. Quelle: https://www.mdpi.com
  • Veröffentlichung
    Decades needed for ecosystem components to respond to a sharp and drastic phosphorus load reduction
    (2020) Beulker, Camilla; Köhler, Antje; Chorus, Ingrid; Fastner, Jutta
    Lake Tegel is an extreme case of restoration: inflow treatment reduced its main external phosphorus (TP) load 40-fold, sharply focused in time, and low-P water flushed the lake volume ~ 4 times per year. We analysed 35 years of data for the time TP concentrations took to decline from ~ 700 to 20-30 (my)g/l, biota to respond and cyanobacteria to become negligible. The internal load proved of minor relevance. After 10 years, TP reached 35-40 (my)g/l, phytoplankton biomass abruptly declined by 50% and cyanobacteria no longer dominated; yet 10 years later at TP < 20-30 (my)g/l they were below quantifiable levels. 20-25 years after load reduction, the lake was stably mesotrophic, macrophytes had returned down to 6-8 m, and vivianite now forms, binding P insolubly in the sediment. Bottom-up control of phytoplankton through TP proved decisive. Five intermittent years with a higher external P load caused some 're-eutrophication', delaying recovery by 5 years. While some restoration responses required undercutting thresholds, particularly that of phytoplankton biomass to TP, resilience and hysteresis proved irrelevant. Future research needs to focus on the littoral zone, and for predicting time spans for recovery more generally, meta-analyses should address P load reduction in combination with flushing rates. The Author(s) 2020