Listen
2 Ergebnisse
Suchergebnisse
Veröffentlichung Quantitative real-time PCR (qPCR) to estimate molecular fungal abundance(2020) Baschien, Christiane; Carl, Steffen C.Fungi are key players in the decomposition of leaves in freshwaters. This functional role is maintained by a specifically adapted fungal community. To assess the quantitative contribution of single fungal species to the process, it is essential to determine their abundance. Quantitative real-time PCR (qPCR) is the prevalent method for this purpose, because it detects individual species of aquatic fungi in samples composed of multiple species. Quantitative PCR reactions are an extension of the traditional PCR method, which facilitates measuring the exponential amplification of a specific gene region via the emission of fluorescence signals in real time. This chapter describes how to design and validate a qPCR assay for fungal litter decomposers. The method uses a taxon-specific Taqman® probe labelled with a fluorescent reporter which hybridizes between two PCR primers. Due to the 5'-3'-exonuclease activity of DNA polymerase during PCR, the reporter dye is released and the emitted fluorescence is measured at 465-510 nm. Monitoring fungal taxa by qPCR assays opens excellent opportunities to gain new insights in microbial community ecology and ecosystem processes such as litter decomposition that are driven by fungi. © Springer Nature Switzerland AG 2020Veröffentlichung Laboratory conditions can change the complexity and composition of the natural aquatic mycobiome on Alnus glutinosa leaf litter(2022) Carl, Steffen C.; Gergs, René; Sahm, René; Mohr, SilviaCommunity structure is of major interest when aquatic fungi are studied, particularly in leaf decomposition experiments. Although such studies are often conducted as laboratory experiments with microbial communities taken from the field, it remains unclear to what extent natural fungal communities can be sustained under experimental conditions. Here, we used DNA metabarcoding to investigate the development of fungal communities on alder leaves both under laboratory and field conditions. Five leaf conditioning treatments were compared by colonizing leaves in a stream, exposing stream colonized leaves to a defined medium or filtered stream water and using stream colonized leaves to inoculate sterile leaves in the defined medium or stream water. Fewer species were found on leaves that were inoculated under laboratory conditions, whereas differences in fungal community composition were comparably low in the other treatments, irrespective of the chosen medium. Possible shifts in fungal communities should therefore be considered in laboratory experiments. © 2021 The Authors