Listen
5 Ergebnisse
Suchergebnisse
Veröffentlichung Occurrence of microplastics in the Danube River - a first screening(2021) Asenova, Mina; Bannick, Claus Gerhard; Bednarz, Marius; Kerndorff, Alexander; Obermaier, Nathan; Ricking, MathiasPlastics, and microplastics in particular, are still part of scientific and regulatory discussions. Their inputs from land ultimately end up in the oceans, where they remain for a long time. River systems represent an important path of entry into the oceans. The Danube is the second largest river in Europe and can therefore be an example for the occurrence of plastic in other large river systems. In JDS4 a comprehensive screening of microplastics was carried out over the entire course of the river. Sampling was performed by means of deploying sedimentation boxes into the river for 14 days; followed by thermo-analytical detection (TED-GC/MS) for determination of the total content of various plastic polymers in the collected suspended particulate matter samples. For the first time, a baseline of pollution by microplastics in the Danube River Basin has been established. In all samples almost, all analyzed polymers were detected and quantified, whereas there is no clear trend along the Danube with increasing or decreasing contents. The contents ranged between 0.05 - 22.24, 0.00 - 0.45, 0.00-1.03 and 0.00 3.32 for PE, PP, SBR and PS [(micro)g/mg] SPM, respectively. Quelle: A shared analysis of the Danube River : joint Danube survey 4 ; scientific report / Editors: Igor Liška [and five others]. - Vienna : International Commission for the Protection of the Danube River, 2021. - 1 Onlineresource (562 pages) : Illustrationen. - E-Book; Dateigröße / Dateiumfang: 44,09 MB. - ISBN 978-3-200-07450-7, Seite 487Veröffentlichung Microplastics in the Danube River Basin: a first comprehensive screening with harmonized analytical approach(2022) Braun, Ulrike; Bannick, Claus Gerhard; Bednarz, Marius; Kerndorf, Alexander; Lukas, Marcus; Obermaier, Nathan; Ricking, MathiasIn this study, carried out within the Joint Danube Survey 4, a comprehensive microplastic screening in the water column within a large European river basin from its source to estuary, including major tributaries, was realized. The objective was to develop principles of a systematic and practicable microplastic monitoring strategy using sedimentation boxes for collection of suspended particulate matter followed by its subsequent analysis using thermal extraction desorption-gas chromatography/mass spectrometry. In total, 18 sampling sites in the Danube River Basin were investigated. The obtained suspended particulate matter samples were subdivided into the fractions of >100 mikrom and <100 mikrom and subsequently analyzed for microplastic mass contents. The results showed that microplastics were detected in all samples, with polyethylene being the predominant polymer with maximum contents of 22.24 mikrog/mg, 3.23 mikrog/mg for polystyrene, 1.03 mikrog/mg for styrene-butadiene-rubber, and 0.45 mikrog/mg for polypropylene. Further, polymers such as different sorts of polyester, polyacrylates, polylactide, and natural rubber were not detected or below the detection limit. Additional investigations on possible interference of polyethylene signals by algae-derived fatty acids were assessed. In the context of targeted monitoring, repeated measurements provide more certainty in the interpretation of the results for the individual sites. Nevertheless, it can be stated that the chosen approach using an integrative sampling and determination of total plastic content proved to be successful. © 2022 The AuthorsVeröffentlichung Plastik in Böden: Einträge, Verhalten und Verbleib(2022) Bannick, Claus Gerhard; Bauerfeld, Katrin; Bednarz, Marius; Braun, UlrikeVeröffentlichung Application of High-Resolution Near-Infrared Imaging Spectroscopy to Detect Microplastic Particles in Different Environmental Compartments(2023) Munz, Matthias; Bannick, Claus Gerhard; Kreiß, Jasper; Bednarz, Marius; Krüger, LisaMicroplastic particles (MPP) occur in various environmental compartments all over the world. They have been frequently investigated in oceans, freshwaters, and sediments, but studying their distribution in space and time is somewhat limited by the time-consuming nature of the available accurate detection strategies. Here, we present an enhanced application of lab-based near-infrared imaging (NIR) spectroscopy to identify the total number of MPP, classify polymer types, and determine particle sizes while maintaining short measuring times. By adding a microscopic lens to the hyperspectral camera and a cross slide table to the setup, the overall detectable particle size has been decreased to 100 Ìm in diameter. To verify and highlight the capabilities of this enhanced, semi-automated detection strategy, it was applied to key areas of microplastic research, such as a lowland river, the adjacent groundwater wells, and marine beach sediments. Results showed mean microplastic concentrations of 0.65 MPP/L in the Havel River close to Berlin and 0.004 MPP/L in the adjacent groundwater. The majority of MPP detected in the river were PP and PE. In 8 out of 15 groundwater samples, no MPP was found. Considering only the samples with quantifiable MPP, then on average 0.01 MPP/L was present in the groundwater (98.5% removal during bank filtration). The most abundant polymers in groundwater were PE, followed by PVC, PET, and PS. Mean MPP concentrations at two beaches on the German Baltic Sea coast were 5.5~MPP/kg at the natural reserve Heiligensee and Hüttelmoor and 47.5 MPP/kg at the highly frequented Warnemünde beach. Quelle: link.springer.comVeröffentlichung A promising approach to monitor microplastic masses in composts(2023) Wiesner, Yosri; Bannick, Claus Gerhard; Bednarz, Marius; Braun, Ulrike; Ricking, MathiasInputs of plastic impurities into the environment via the application of fertilizers are regulated in Germany and the EU by means of ordinances. Robust and fast analytical methods are the basis of legal regulations. Currently, only macro- and large microplastic contents (>1 mm) are measured. Microplastics, are not yet monitored. Thermal analytical methods are suitable for this purpose, which can determine the mass content and can also be operated fully automatically in routine mode. Thermal extraction desorption-gas chromatography/mass spectrometry (TED-GC/MS) allows the identification of polymers and the determination of mass contents in solid samples from natural environments. In accordance with the German or European Commission (EC) Fertiliser Ordinance, composting plants should be monitored for microplastic particles with this method in the future. In this context a compost plant was sampled. At the end of the rotting process, the compost was sieved and separated in a coarse (>1 mm) and a fine fraction (<1 mm). The fine fraction was processed using density separation comparing NaCl and NaI as possible salt alternative and screened for microplastic masses by TED-GC/MS with additional validation and quality assurance experiments. With TED-GC/MS total microplastics mass contents of 1.1-3.0 g/mg in finished compost could be detected with polyethylene mainly. What differs much to the total mass of plastics in the coarse fraction with up to 60 ug/mg, which were visually searched, identified via ATR-FTIR and gravimetrically weighted. © 2023 Wiesner, Bednarz, Braun, Bannick, Ricking and Altmann.