Person:
Brendel, Stephan

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Forschungsvorhaben
Berufsbeschreibung
Nachname
Brendel
Vorname
Stephan
Name

Suchergebnisse

Gerade angezeigt 1 - 4 von 4
  • Veröffentlichung
    A critical examination of the protection level for primary producers in the first tier of the aquatic risk assessment for plant protection products
    (2023) Brendel, Stephan; Duquesne, Sabine; Hönemann, Linda; Konschak, Marco; Pieper, Silvia; Solé, Magali; Wogram, Jörn
    Background The aim of environmental risk assessment (ERA) for pesticides is to protect ecosystems by ensuring that specific protection goals (SPGs) are met. The ERA follows a prospective tiered approach, starting with the most conservative and simple step in risk assessment (RA) (so-called tier 1) using the lowest available appropriate endpoint derived from ecotoxicological tests. In 2015, for the tier 1 RA of aquatic primary producers, the recommendation was changed from using the lowest of the 50% inhibition (EC50) values based on biomass (area under the curve-EbC50), increase in biomass (yield- EyC50) or growth rate (ErC50) to only using the growth rate inhibition endpoint (ErC50) because it is independent of the test design and thus more robust. This study examines the implications of this such on the level of conservatism provided by the tier 1 RA and evaluates whether it ensures a suitable minimum protection level. Results Our analysis shows that replacing the lowest endpoint with the growth rate inhibition endpoint while maintaining the assessment factor (AF) of 10 significantly reduces the conservatism in the tier 1 RA. Comparing protection levels achieved with different endpoints reveals that the current assessment is less protective. To maintain the previous level of protection, and since the protection goals have not changed, we recommend to multiply the default AF of 10 by an extra factor of minimum 2.4 in the tier 1 RA based on ErC50. Independently of the endpoint selected in tier 1 RA, several issues in the general RA of pesticides contribute to uncertainties when assessing the protection levels, e.g., lack of appropriate comparison of the higher tier experimental studies (i.e., best achievable approximation of field situation, so-called surrogate reference tier) with field conditions or the regulatory framework's failure to consider realistic conditions in agricultural landscapes with multiple stressors and pesticide mixtures. Conclusions We advise to consider adjusting the risk assessment in order to reach at least the previous protection level for aquatic primary producers. Indeed continuing using an endpoint with a higher value and without adjustment of the assessment factor is likely to jeopardize the need of halting biodiversity loss in surface waters. © The Author(s) 2023
  • Veröffentlichung
    Four selected high molecular weight heterocyclic aromatic hydrocarbons: Ecotoxicological hazard assessment, environmental relevance and regulatory needs under REACH
    (2018) Brendel, Stephan; Einhenkel-Arle, Doreen; Hassold, Enken; Polleichtner, Christian
    Little is known about the ecotoxicity of heterocyclic aromatic hydrocarbons (NSO-HETs) to aquatic organisms. In the environment, NSO-HETs have been shown to occur in a strong association with their unsubstituted carbocyclic analogues, the polycyclic aromatic hydrocarbons (PAH), for which much more information is available. The present study addressed this issue by investigating the toxicity of four selected NSO-HETs in green algae (Desmodesmus subspicatus), daphnids (Daphnia magna) and fish embryos (Danio rerio). The four high molecular weight NSO-HETs dibenz[a,j]acridine (DBA), 7H-dibenzo[c,g]carbazole (DBC), benzo[b]naphtho[2,1-d]thiophene (BNT) and benzo[b]naphtho[1,2-d]furan (BNF) were selected, based on the results of a previous research project, indicating a lack of toxicity data and a high potential for persistence and bioaccumulation. The solubilities of the NSO-HETs in the test media were determined and turned out to be comparatively low (2.7-317ng/L) increasing in the following order: DBA < BNT " DBC " BNF. Exposure concentrations during the toxicity tests were quantified with GC-MS and decreased strongly possibly due to sorption or metabolising during the test periods (48-96 h). Therefore, the estimated effect concentrations were related to the mean measured concentrations, as endpoints related to nominal concentrations would have underestimated the toxicity many times over. Within the range of the substance solubilities, BNF affected all test organisms with fish embryos being the most sensitive (fish: EC50 6.7 ng/L, algae: EC10 17.8 ng/L, daphnids: EC50 55.8 ng/L). DBC affected daphnids (EC50 2.5 ng/L,) and algae (EC10 3.1 ng/L), but not fish embryos. The lowest toxicity endpoint was observed for BNT affecting only algae (NOEC 0.556 ng/L) and neither daphnids nor fish embryos. DBA did not show any effects on the tested organisms in the range of the water solubility. However, we would expect effects in long-term toxicity studies to fish and aquatic invertebrates for all substances at lower concentrations, which needs further investigation. All four NSO-HETs were identified in mussels (Mytilus edulis) from the German coasts, in green kale (Brassica oleracea var. acephala) and in freshwater harbor sediment in concentrations between 0.07 and 2 ng/kg, highlighting their relevance as environmental contaminants. There is a need to regulate the four NSO-HETs within the REACH regulation due to their intrinsic properties and their environmental relevance. However, acquisition of additional experimental data appears to be pivotal for a regulation under REACH. © 2018 The Authors. Published by Elsevier Inc.
  • Veröffentlichung
    Short-chain perfluoroalkyl acids: environmental concerns and a regulatory strategy under REACH
    (2018) Biegel-Engler, Annegret; Fetter, Èva; Brendel, Stephan; Fetter, Éva; Staude, Claudia; Vierke, Lena
    Background Short-chain PFASs (per- and polyfluoroalkyl substances) are widely used as alternatives to long-chain PFASs. Long-chain PFASs become gradually regulated under REACH (EC No. 1907/2006) and other international regulations, due to having persistent, bioaccumulative and toxic properties and/or being toxic for reproduction. The increasingly used short-chain PFASs are assumed to have a lower bioaccumulation potential. Nonetheless, they have other properties of concern and are already widely distributed in the environment, also in remote regions. The REACH Regulation does not directly address these emerging properties of concern, complicating the implementation of regulatory measures. Therefore, this study illustrates these environmental concerns and provides a strategy for a regulation of short-chain PFASs within REACH. Results Short-chain PFASs have a high mobility in soil and water, and final degradation products are extremely persistent. This results in a fast distribution to water resources, and consequently, also to a contamination of drinking water resources. Once emitted, short-chain PFASs remain in the environment. A lack of appropriate water treatment technologies results in everlasting background concentrations in the environment, and thus, organisms are permanently and poorly reversibly exposed. Considering such permanent exposure, it is very difficult to estimate long-term adverse effects in organisms. Short-chain PFASs enrich in edible parts of plants and the accumulation in food chains is unknown. Regarding these concerns and uncertainties, especially with respect to the precautionary principle, short-chain PFASs are of equivalent concern to PBT substances. Therefore, they should be identified as substances of very high concern (SVHC) under REACH. The SVHC identification should be followed by a restriction under REACH, which is the most efficient way to minimize the environmental and human exposure of short-chain PFASs in the European Union. Conclusion Due to an increasing use of short-chain PFASs, an effective regulation is urgently needed. The concerns of short-chain PFASs do not match the "classical" concerns as defined under REACH, but are not of minor concern. Therefore, it is of advantage to clearly define the concerns of short-chain PFASs. This might facilitate the following restriction process under REACH. © The Author(s) 2018