Person:
Galert, Wiebke

Lade...
Profilbild

ORCID

Nachname

Galert

Vorname

Wiebke

Affiliation

Deutschland, Umweltbundesamt, Fachgebiet IV.2.3-Chemikalien

Forschungsvorhaben

Organisationseinheiten

Suchergebnisse

Gerade angezeigt 1 - 3 von 3
  • Veröffentlichung
    Options for an environmental risk assessment of intentional and unintentional chemical mixtures under REACH
    (2021) Galert, Wiebke; Hassold, Enken; Schulze, Jona
    It is acknowledged that a variety of chemicals enter the environment and may cause joint effects. Chemicals regulated under the European Chemicals Regulation REACH are often part of formulated mixtures and during their processing and use in various products they can be jointly released via sewage treatment plants or diffuse sources, and may combine in the environment. One can differentiate between intentional mixtures, and unintentional mixtures. In contrast to other substance-oriented legislations, REACH contains no explicit requirements for an assessment of combined effects, exposures and risks of several components. Still, it requires ensuring the safe use of substances on their own, in mixtures, and in articles. The available options to address intentional as well as unintentional mixtures are presented and discussed with respect to their feasibility under REACH, considering the responsibilities, communication tasks and information availability of the different actors (registrants, downstream-user and authorities). Specific mixture assessments via component-based approaches require a comprehensive knowledge on substances properties, uses, fate and behaviour, and the composition of the mixture under consideration. This information is often not available to the responsible actor. In principle, intentional mixtures of known composition can be assessed by the downstream-user. But approaches have to be improved to ensure a transparent communication and sound mixture assessment. In contrast, unintentional mixtures appear to be better addressable via generic approaches such as a mixture allocation factor during the chemical safety assessment, although questions on the magnitude, implementation and legal mandates remain. Authorities can conduct specific mixture risk assessments in well-defined and prioritized cases, followed by subsequent regulatory measures. In order to address intentional and unintentional mixtures within the current REACH framework, legal mandates together with guidance for the different actors are needed. Furthermore, further data on mixture compositions, uses and co-exposures need to be made accessible via shared databases. © The Author(s) 2021.
  • Veröffentlichung
    Environmental risk assessment of nanomaterials in the light of new obligations under the REACH regulation: which challenges remain and how to approach them?
    (2020) Schwirn, Kathrin; Galert, Wiebke; Völker, Doris
    Within the European regulation on the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH, EC No 1907/2006) specific provisions for nanomaterials were included, which have become effective on 1 January 2020. Although knowledge on the peculiarities of testing and assessing fate and effects of nanomaterials in the environment strongly increased in the last years, uncertainties about how to perform a reliable and robust environmental risk assessment for nanomaterials still remain. These uncertainties are of special relevance in a regulatory context, challenging both industry and regulators. The present paper presents current challenges in regulatory hazard and exposure assessment under REACH, as well as classification of nanomaterials, and makes proposals to address them. Still, the nanospecific considerations made here are expected to also be valid for environmental risk assessment approaches in other regulations of chemical safety. Inter alia, these proposals include a way forward to account for exposure concentrations in aquatic toxicity test systems, a discussion of how to account for availability of dissolving nanomaterials in aquatic test systems, and a pragmatic proposal to deduce effect data for soil organisms. Furthermore, it specifies how to potentially deal with nanoforms under the European regulation on Classification, Labelling and Packaging of substances and mixtures (CLP) and outlines the needs for proper exposure assessments of nanomaterials from a regulatory perspective. Integr Environ Assess Manag 2020;16:706-717. © 2020 The Authors.
  • Veröffentlichung
    Environmental Risk Assessment of Technical Mixtures Under the European Registration, Evaluation, Authorisation and Restriction of Chemicals
    (2021) Galert, Wiebke; Hassold, Enken
    The European Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) regulation has been in force since 2007 and is intended to ensure a high level of protection for human health and the environment. The REACH regulation is based on the principle that manufacturers, importers, and downstream users take responsibility for their chemicals. Currently about 23 000 single chemicals are registered within the REACH legislation. A large proportion of substances registered under REACH end up in technical mixtures, intentionally manufactured as such, or generated mixtures containing byproducts of processes. Such mixtures that contain a number of different components are, for example, ink, paint, lacquer, mortar, or cleaning agents. However, REACH focuses on single substances and addresses the safe use of substances as such (e.g., bisphenol A) or substances in mixtures (e.g., bisphenol A used as an antioxidant in mixtures) and in articles (e.g., bisphenol A used as a monomer for polycarbonate production from which greenhouse sheets may be made). In contrast to other substance regulations, under REACH the registrants and downstream users of chemicals are responsible for the risk assessment. According to the REACH regulation, they also have the obligation to derive and communicate safe use conditions for their technical mixtures. Currently, no guidance document and no distinct obligations for an assessment of technical mixtures exist. In light of the available evidence for the joint exposures and effects of chemicals due to co-exposures, the need for approaches for a mixture assessment and improved data communications were highlighted by various stakeholders from industry, European member states, and the European Chemicals Agency (ECHA). The lead component identification (LCID) methodology and the safe use of mixtures information (SUMI) tool were proposed by the European Chemical Industry Council (Cefic) as working tools for the evaluation of the hazard potential, derivation of safe use conditions, and data communication for mixtures along the supply chain. The present paper analyzes the workability and pitfalls of these proposed methodologies from a regulatory perspective, aiming at a safe use of technical mixtures which considers the joint effects and exposures of its components. Integr Environ Assess Manag 2021;17:498-506. © 2021 Umweltbundesamt