Vorschaubild nicht verfügbar

Publikationstyp

Wissenschaftlicher Artikel

Erscheinungsjahr

2015
'http://rightsstatements.org/vocab/InC/1.0/'

Detection and attribution of regional CO2 concentration anomalies using surface observations

Autor:innen

Herausgeber

Quelle

Atmospheric Environment
123. 2015, Seite 88-101

Schlagwörter

Kohlendioxid

Forschungskennzahl (FKZ)

Verbundene Publikation

Zitation

Detection and attribution of regional CO2 concentration anomalies using surface observations, 2015. Atmospheric Environment [online]. Bd. 123. 2015, Seite 88-101. DOI 10.60810/openumwelt-1369. Verfügbar unter: https://openumwelt.de/handle/123456789/7769
Zusammenfassung englisch
In this study, observed episodes of CO2 concentrations at eight Northern Hemisphere (NH) sites from 1993 to 2012 were analyzed. Five-day back trajectories were calculated for a potential source contribution function (PSCF) analysis. A normalized weight factor related to the occurrence of the episodes was applied to derive more reasonable CO2 elevations and sequestrations. Weighted elevated (?CO2(W_E)) and sequestered (?CO2(W_S)) CO2 episodes had large spatial discrepancies due to the differentiation of strength and patterns of CO2 emissions/sinks in different regions. The most significant enhancement in CO2 episodes was observed at Asian sites: ?CO2(W_E) increased by approximately 56% at an annual rate of ~4% yr-1 from 1995 to 2010 at Waliguan (WLG) and by approximately 39% (~3% yr-1) from 1997 to 2012 at Yonagunijima (YON). According to the PSCF analysis, these increases are largely attributed to the rapid increase in emissions in China. However, ?CO2(W_S) was also enhanced by 34.4% with a growth rate of 2.3% yr-1 at WLG from 1995 to 2010 and ~26.2% (1.7% yr-1) at YON from 1997 to 2012. Both ?CO2(W_E) and ?CO2(W_S) showed decreasing or relatively flat trends at Monte Cimone and Schauinsland, indicating reductions in emissions and sinks in central Europe. The different intensities/trends in emissions and sinks observed at different sites in the NH show that estimating future CO2 levels is a complex problem. Atmospheric inverse and process-based ecosystem models should use more regional input data at high temporal and spatial resolutions for future carbon flux estimations.
Quelle: www.sciencedirect.com