Vorschaubild nicht verfügbar

Publikationstyp

Wissenschaftlicher Artikel

Erscheinungsjahr

2022
'http://rightsstatements.org/vocab/InC/1.0/'

Spatial variation of rodenticides and emerging contaminants in blood of raptor nestlings from Germany

Herausgeber

Quelle

Environmental science and pollution research
29 (2022), Heft 40

Schlagwörter

Biomonitoring

Forschungskennzahl (FKZ)

Verbundene Publikation

Zitation

BADRY, Alexander, Detlef SCHENKE, Helmut BRÜCHER und Gabriele TREU, 2022. Spatial variation of rodenticides and emerging contaminants in blood of raptor nestlings from Germany. Environmental science and pollution research [online]. 2022. Bd. 29 (2022), Heft 40. DOI 10.60810/openumwelt-1036. Verfügbar unter: https://openumwelt.de/handle/123456789/2300
Zusammenfassung englisch
Wildlife exposures to pest controlling substances have resulted in population declines of many predatory species during the past decades. Many pesticides were subsequently classifed as persistent, bioaccumulative, and toxic (PBT) and banned on national or global scales. However, despite their risks for non-target vertebrate wildlife, PBT substances such as anticoagulant rodenticides (ARs) are still permitted for use in Europe and have shown to threaten raptors. Whereas risks of ARs are known, much less information is available on emerging agrochemicals such as currently used PPPs and medicinal products (MPs) in higher trophic level species. We expect that currently used PPPs are relatively mobile (vs. lipophilic) as a consequence of the PBT criteria and thus more likely to be present in aqueous matrices. We therefore analyzed blood of 204 raptor nestlings of three terrestrial (red kite, common buzzard, Montagu's harrier) and two aquatic species (white-tailed sea eagle, osprey) from Germany. In total, we detected ARs in 22.6% of the red kites and 8.6% of the buzzards, whereas no Montagu's harriers or aquatic species were exposed prior to sampling. Sigma AR concentration tended to be higher in North Rhine-Westphalia (vs. North-Eastern Germany) where population density is higher and intense livestock farming more frequent. Among the 90 targeted and currently used PPPs, we detected six substances from which bromoxynil (14.2%) was most frequent. Especially Montagu's harrier (31%) and red kites (22.6%) were exposed and concentrations were higher in North Rhine-Westphalia as well. Among seven MPs, we detected ciprofoxacin (3.4%), which indicates that risk mitigation measures may be needed as resistance genes were already detected in wildlife from Germany. Taken together, our study demonstrates that raptors are exposed to various chemicals during an early life stage depending on their sampling location and underpins that red kites are at particular risk for multiple pesticide exposures in Germany. © The Author(s) 2022