Person:
Fettig, Ina

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Forschungsvorhaben
Berufsbeschreibung
Nachname
Fettig
Vorname
Ina
Name

Suchergebnisse

Gerade angezeigt 1 - 2 von 2
  • Veröffentlichung
    Hg isotopic composition of one-year-old spruce shoots: Application to long-term Hg atmospheric monitoring in Germany
    (2021) Yamakawa, Akane; Amouroux, David; Fettig, Ina; Tessier, Emmanuel; Koschorreck, Jan
    The Hg isotopic composition of 1-year-old Norway spruce (Picea abies) shoots collected from Saarland cornurbation Warndt, Germany, since 1985 by the German Environmental Specimen Bank, were measured for a better understanding of the temporal trends of Hg sources. The isotopic data showed that Hg was mainly taken up as gaseous element mercury (GEM) and underwent oxidation in the spruce needles; this led to a significant decrease in the δ202Hg compared with the atmospheric Hg isotopic composition observed for deciduous leaves and epiphytic lichens. Observation of the odd mass-independent isotopic fractionation (MIF) indicated that ÎÌ199Hg and ÎÌ201Hg were close to but slightly lower than the actual values recorded from the atmospheric measurement of the GEM isotopic composition in non-contaminated sites in U.S. and Europe, whereas observation of the even-MIF indicated almost no differences for ÎÌ200Hg. This confirmed that GEM is a major source of Hg accumulation in spruce shoots. Interestingly, the Hg isotopic composition in the spruce shoots did not change very significantly during the study period of >30 years, even as the Hg concentration decreased significantly. Even-MIF (ÎÌ200Hg) and mass-dependent fractionation (MDF) (δ202Hg) of the Hg isotopes exhibited slight decrease with time, whereas odd-MIF did not show any clear trend. These results suggest a close link between the long-term evolution of GEM isotopic composition in the air and the isotopic composition of bioaccumulated Hg altered by mass-dependent fraction in the spruce shoots. © 2021 The Authors
  • Veröffentlichung
    Exploring unknown per- and polyfluoroalkyl substances in the German environment - The total oxidizable precursor assay as helpful tool in research and regulation
    (2021) Göckener, Bernd; Fettig, Ina; Fliedner, Annette; Rüdel, Heinz; Koschorreck, Jan
    Limnetic, marine and soil samples of the German environmental specimen bank (ESB) were analyzed for per- and polyfluoroalkyl substances (PFAS) using target analysis and a modified total oxidizable precursor (TOP) assay (direct TOP assay (dTOP)) that works without prior extraction. Target analysis determined (Sigma)PFAS concentrations in bream livers of 8.7-282 (my)g kg-1 wet weight (ww) in 2019, with highest contaminations in the Rhine and lower Elbe. In bream fillet, concentrations were lower (<0.5-10.6 (my)g kg-1 (Sigma)PFAS). Contamination of suspended particulate matter (SPM) was highest in the upper Elbe downstream the Czech border (5.5 (my)g kg-1 dry weight (dw) in 2018). Herring gull eggs from the North and Baltic Seas showed (Sigma)PFAS levels around 53.0-69.6 (my)g kg-1 ww in 2019. In soil, concentrations ranged between <0.5 and 4.6 (my)g kg-1 dw with highest levels in the Dueben Heath near Leipzig and the low mountain range Solling. PFOS dominated in most samples. Of the targeted precursors, only FOSA, EtFOSAA, MeFOSAA, 6:2-FtS and 6:2 diPAP were found. Replacement chemicals (ADONA, HFPO-DA, F-53B) were not detected. The dTOP assay revealed that considerable amounts of precursors were present at most riverine sampling sites. Particularly high precursor concentrations were observed in samples from the Upper Elbe at the Czech border and the Upper and Middle Rhine. In herring gull eggs and most soil samples, though, concentrations of precursors were low. Time trend analysis showed decreasing trends for most detected PFAS since 2005. In SPM, however, C4-C6 perfluoroalkyl carboxylic acids seem to increase indicating growing use of precursors based on shorter fluorinated chains. The results demonstrate that target analysis detects only a minor fraction of the PFAS burdens in environmental samples. The dTOP assay can support risk assessment and chemical monitoring with more comprehensive exposure data of the actual contamination. © 2021 The Author(s).