Person:
Lohse, Christiane

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Forschungsvorhaben
Berufsbeschreibung
Geowissenschaftlerin
Nachname
Lohse
Vorname
Christiane
Name

Suchergebnisse

Gerade angezeigt 1 - 3 von 3
  • Veröffentlichung
    Environmental Impact by Hydrogeothermal Energy Generation in Low-Enthalpy Regions
    (2018) Lohse, Christiane
    In view of the climate crisis, the development and the path of growth and expansion of renewable energy systems is an urgent task, but must carried out with great care on environmental compatibility and protection. Renewable energy supply systems that are suitable for grid-bound heat supply, particularly in urban areas in Europe, are geothermal binary plants that provide power as well as power and heat. This paper will present studies whose objective was the assessment of hydrogeothermal power and heat generation in low-enthalpy regions from the environmental standpoint. The German Environment Agency published results of a network of studies conducted between 2008 and 2016 on the analysis of detailed and comprehensive environmental impacts of the geothermal energy generation in Germany and has continuously evaluated these findings. In this article, the results of the Life Cycle Assessment are discussed, taking into account all effects and material flows within the entire life cycle. Based on these balances, differing geothermal systems are compared to each other and to other renewable and fossil energy generation systems in order to assess the ecological advantages and disadvantages of these systems. Taking into account local environmental impacts as well a comprehensive ecologic evaluation of potential environmental and human health impacts becomes possible. The paper presents the results of a) the mass and energy fluxes of the process chain along the life cycle, and b) the local environmental impacts along the life cycle with regard to the environmental indicators of these cases. The focus is on the impact of site and plant parameters. Concluding, it can be summarised that geothermal power and heat generation is a very low-carbon technology and can contribute to a sustainable energy supply. Hydrogeothermal plants show a significantly low surface consumption, and environmental impacts are only locally relevant and technically controllable. Through the development of optimised overall concepts, geothermal based power and heat generation can achieve minimal environmental impacts in all areas. The combined heat and power generation from geothermal resources is by far the most environmentally and climate-friendly energy supply compared to all other regenerative and fossil systems. © 2017 Elsevier Ltd.
  • Veröffentlichung
    Sustainable heat pump systems in a transformed energy system based on renewables
    (2018) Lohse, Christiane; Wagener-Lohse, Georg
    In a number of studies, the German Environment Agency (UBA) has carried out model calculations on how the heat supply in Germany can become renewable. This paper refers to the GHG reduction scenario of UBA (GreenEe-scenario) which aims at 95% reduction in greenhouse gases by 2050 and a 60% reduction in the use of biotic and abiotic resources. Heat pump systems of different technical specifications, using geo-thermal energy and ambient heat, will then be the central heat supply technologies in the energy system. If the heating requirements of buildings can be reduced by 2/3 by 2050, heat supply is feasible with district heating (with a share of 18%), and heat pump systems (with a share of 76%). In the course of sector inter-connection, renewable electricity is increasingly being used in the low-exergy heat sector. The paper briefly describes the energy consumption of the German buildings sector and highlights the needs to reduce greenhouse gas emissions. A comparative discussion of the UBA study with studies and scenarios from other institutes leads to the identification of the most effective measures to decarbonise the buildings sector in a resource-saving manner. All considerations show that the goal can be achieved primarily with heat pump systems. The paper lists the low temperature heat sources for heat pump systems, and compares their different utilization techniques and the respective energy yield. Technological innovations and the plan-ning processes must be aimed at minimizing negative environmental effects; the protection requirements for the environmental media concerned, such as groundwater and soil, must be met. Heat pump systems must not be used if the implementation results in deterioration of the environmental status. In: Proceedings of ECOS 2018 : the 31st International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems / Cost, Optimization, Simulation and Environmental Impact of Energy Systems 31st International Conference on Efficiency Herausgebendes Organ. - Guimarães. - (2018), Paper #408