Person:
Rüther, Maria

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Forschungsvorhaben
Berufsbeschreibung
Nachname
Rüther
Vorname
Maria
Name

Suchergebnisse

Gerade angezeigt 1 - 8 von 8
  • Veröffentlichung
    Exposure to phthalates in European children, adolescents and adults since 2005: a harmonized approach based on existing HBM data in the HBM4EU Initiative
    (2023) Kolossa-Gehring, Marike; Lange, Rosa; Murawski, Aline; Rüther, Maria; Gerofke, Antje; Schmidt, Phillipp; Springer, Andrea; Vogel, Nina; Weber, Till
    Phthalates are mainly used as plasticizers and are associated inter alia with adverse effects on reproductive functions. While more and more national programs in Europe have started monitoring internal exposure to phthalates and its substitute 1,2-Cyclohexanedicarboxylic acid (DINCH), the comparability of results from such existing human biomonitoring (HBM) studies across Europe is challenging. They differ widely in time periods, study samples, degree of geographical coverage, design, analytical methodology, biomarker selection, and analytical quality assurance level. The HBM4EU initiative has gathered existing HBM data of 29 studies from participating countries, covering all European regions and Israel. The data were prepared and aggregated by a harmonized procedure with the aim to describe - as comparably as possible - the EU-wide general population's internal exposure to phthalates from the years 2005 to 2019. Most data were available from Northern (up to 6 studies and up to 13 time points), Western (11; 19), and Eastern Europe (9; 12), e.g., allowing for the investigation of time patterns. While the bandwidth of exposure was generally similar, we still observed regional differences for Butyl benzyl phthalate (BBzP), Di(2-ethylhexyl) phthalate (DEHP), Di-isononyl phthalate (DiNP), and Di-isobutyl phthalate (DiBP) with pronounced decreases over time in Northern and Western Europe, and to a lesser degree in Eastern Europe. Differences between age groups were visible for Di-n-butyl phthalate (DnBP), where children (3 to 5-year olds and 6 to 11-year olds) had lower urinary concentrations than adolescents (12 to 19-year-olds), who in turn had lower urinary concentrations than adults (20 to 39-year-olds). This study is a step towards making internal exposures to phthalates comparable across countries, although standardized data were not available, targeting European data sets harmonized with respect to data formatting and calculation of aggregated data (such as developed within HBM4EU), and highlights further suggestions for improved harmonization in future studies. © 2023 by the authors
  • Veröffentlichung
    N-methylmalonamic acid (NMMA) as metabolite of methylisothiazolinone and methylchloroisothiazolinone in 24-h urine samples of the German Environmental Specimen Bank from 2000 to 2017
    (2020) Schettgen, Thomas; Kolossa-Gehring, Marike; Rüther, Maria; Weber, Till
    Methylisothiazolinone (MI) and the mixture of methylchloroisothiazolinone/methylisothiazolinone (MCI/MI, 3:1) are widespread biocides used in cosmetics, household products, paints or as disinfectant in air-conditioning systems. Exposure to these compounds has raised concerns due to their sensitizing potential, as rates of skin sensitization were reported to increase in the last decade. We have analyzed N-methylmalonamic acid (NMMA), a common metabolite of MI and MCI in 24-h urine samples of the German Environmental Specimen Bank collected from 480 participants (240 male/240 female) between the years 2000 and 2017. Using these data, we were able to calculate the overall daily intake of MI and/or MCI/MI (3:1) of the study participants and point out time trends. NMMA was determined in all urine samples investigated above the LOQ of 0.5 (my)g/L urine. Median and 95th percentile level of NMMA in all 24-h urine samples was 4.1 (my)g/g creatinine and 8.5 (my)g/g creatinine, respectively. This would correspond to a median and 95th percentile daily intake of 0.35 (my)g/kg bw and 0.71 (my)g/kg bw for exclusive uptake of MI and 0.64 (my)g/kg bw and 1.28 (my)g/kg bw for exclusive uptake of MCI/MI (3:1). We noted only slight variations over time for median exposures, but an increasing time trend in the 95th percentile exposure between 2006 and 2011 with a decrease in recent years, probably reflecting regulatory measures on MI and MCI/MI (3:1) in cosmetic products. Increasing knowledge on determinants of exposure to MI and/or MCI/MI (3:1) would be necessary to further lower exposure to these sensitizing compounds. © 2019 Elsevier Ltd. All rights reserved.
  • Veröffentlichung
    Time trend of exposure to the phthalate plasticizer substitute DINCH in Germany from 1999 to 2017: Biomonitoring data on young adults from the Environmental Specimen Bank (ESB)
    (2019) Kasper-Sonnenberg, Monika; Apel, Petra; Koch, Holger M.; Kolossa-Gehring, Marike; Rüther, Maria
    DINCH (cyclohexane-1,2-dicarboxylic acid-diisononyl ester) is a phthalate plasticizer substitute introduced into the market in 2002. It is increasingly used especially in the production of toys, food contact materials and medical devices. In this measurement campaign on 24-h urine samples of young adults (20-29 years) from the German Environmental Specimen Bank (ESB) collected in 2010, 2011, 2013, 2015 and 2017 (in total 300 samples, 60 samples/year) we analyzed three specific, oxidized DINCH metabolites (OH-MINCH: cyclohexane-1,2-dicarboxylic acid-mono(hydroxy-isononyl) ester; cx-MINCH: cyclohexane-1,2-dicarboxylic acid-mono(carboxy-isooctyl) ester, oxo-MINCH: cyclohexane-1,2-dicarboxylic acid-mono(oxo-isononyl) ester). We merged these data with earlier data of the ESB from the years 1999-2012 and are now able to report levels and time trends of internal DINCH exposure from 1999 to 2017. After first detections of the major oxidized DINCH metabolite OH-MINCH in 2006 (6.7%) detection rates rapidly increased to 43.3% in 2009, 80% in 2010 and 98.3% in 2011 and 2012. From the year 2013 on we could detect OH-MINCH in every urine sample analyzed. The median concentrations of OH-MINCH rapidly increased from 0.15 (Mü)g/L in 2010 to twice the concentration in 2011 (0.31 (Mü)g/L) with further increases in 2013 (0.37 (Mü)g/L), 2015 (0.59 (Mü)g/L) and 2017 (0.70 (Mü)g/L). Similar increases, albeit at lower detection rates and concentration levels, could be observed for cx-MINCH and oxo-MINCH. All metabolites strongly correlate with each other. For the ESB study population, DINCH exposures are still far below health based guidance values such as the German Human Biomonitoring Value (HBM-I; 4,500 (Mü)g/L for the sum of OH-MINCH and cx-MINCH) or the tolerable daily intake (TDI) of EFSA (1mg/kg/bw/d). The median daily DINCH intake (DI) calculated for 2017 was 0.23 (Mü)g/kg bw/d, thus 4,310-times lower than the TDI. The maximum DI calculated for one individual in 2012 (42.60 (Mü)g/kg bw/d) was a factor of more than 20 below the TDI. The ongoing increase in DINCH exposure needs to be closely monitored in the future, including populations with potentially higher exposures such as children. This close monitoring will enable timely exposure and risk reduction measures if exposures reached critical levels, or if new toxicological data lead to lower health based guidance values. DINCH belongs to the European Human Biomonitoring Initiative (HBM4EU) priority substances for which policy relevant questions still have to be answered. © 2019 Elsevier GmbH. All rights reserved.
  • Veröffentlichung
    Time course of phthalate cumulative risks to male developmental health over a 27-year period: Biomonitoring samples of the German Environmental Specimen Bank
    (2020) Apel, Petra; Kortenkamp, Andreas; Conrad, André; Koch, Holger Martin; Kolossa-Gehring, Marike; Rüther, Maria
    In several human biomonitoring surveys, changes in the usage patterns of phthalates have come to light, but their influence on the risks associated with combined exposures is insufficiently understood. Based on the largest study to date, the 27-year survey of urinary phthalate metabolite levels in 24-hour urine samples from the German Environmental Specimen Bank, we present a deep analysis of changing phthalate exposures on mixture risks. This analysis adopts the Hazard Index (HI) approach based on the five phthalates DBP, DIBP, BBP, DEHP and DINP. Calculations of the hazard index for each study participant included updated phthalate reference doses for anti-androgenicity (RfDAAs) that take account of new evidence of phthalates' developmental toxicity. The Maximum Cumulative Ratio (MCR) approach was used to establish whether a subjectâ€Ìs combined exposure was dominated by one phthalate or was influenced by several phthalates simultaneously. Generally, over the years there was a shift towards lower HIs and higher MCRs, reflecting an increased complexity of the combined exposures. The decade from 1988 to about 1999 was characterised by rather high HIs of between 3 and 7 (95th percentile) which were driven by exposure to DBP and DEHP, often exceeding their single acceptable exposures. Traditional single phthalate risk assessments would have underestimated these risks by up to 50%. From 2006 onwards, no study participant experienced exposures above acceptable levels for a single phthalate, but combined exposures were still in excess of HI = 1. From 2011 onwards most individuals stayed below HI = 1. In interpreting these results, we caution against the use of HI = 1 as an acceptable limit and develop proposals for improved and more realistic mixture risk assessments that take account of co-exposures to other anti-androgenic substances also capable of disrupting the male reproductive system. From this perspective, we regard HIs between 0.1 and 0.2 as more appropriate for evaluating combined phthalate exposures. Assessed against lowered HIs of 0.1 - 0.2, the combined phthalate exposures of most study participants exceeded acceptable levels in all study years, including 2015. Continued monitoring efforts for phthalate combinations are required to provide the basis for appropriate risk management measures. © 2020 The Authors.
  • Veröffentlichung
    Glyphosate in German adults - Time trend (2001 to 2015) of human exposure to a widely used herbicide
    (2017) Conrad, André; Schröter-Kermani, Christa; Hoppe, Hans-Wolfgang; Kolossa-Gehring, Marike; Pieper, Silvia; Rüther, Maria
  • Veröffentlichung
    Metabolites of the alkyl pyrrolidone solvents NMP and NEP in 24-h urine samples of the German Environmental Specimen Bank from 1991 to 2014
    (2018) Ulrich, Nadin; Bury, Daniel; Koch, Holger Martin; Kolossa-Gehring, Marike; Rüther, Maria; Weber, Till
    Purpose The aim of this study was to get a first overview of the exposure to the solvents and reproductive toxicants N-methyl-2-pyrrolidone (NMP) and N-ethyl-2-pyrrolidone (NEP) in Germany. NMP and NEP metabolite concentrations were determined in 540 24-h urine samples of the German Environmental Specimen Bank collected from 1991 to 2014. With these data we were able to investigate NMP/NEP exposures over time and to evaluate associated risks. Methods NMP metabolites 5-hydroxy-N-methyl-2-pyrrolidone (5-HNMP) and 2-hydroxy-N-methylsuccinimide (2-HMSI) and NEP metabolites 5-hydroxy-N-ethyl-2-pyrrolidone (5-HNEP) and 2-hydroxy-N-ethylsuccinimide (2-HESI) were determined by stable isotope dilution analysis using solid phase extraction followed by derivatization (silylation) and GCâ€ÌEIâ€ÌMS/MS. Results We were able to quantify 5-HNMP and 2-HMSI in 98.0 and 99.6% and 5-HNEP and 2-HESI in 34.8 and 75.7% of the samples. Metabolite concentrations were rather steady over the timeframe investigated, even for NEP which has been introduced as an NMP substitute only in the last decade. Calculated median daily intakes in 2014 were 2.7 Ìg/kg bw/day for NMP and 1.1 Ìg/kg bw/day for NEP. For the combined risk assessment of NMP and NEP exposure, the hazard index based on the human biomonitoring assessment I values (HBM I values) was less than 0.1. Conclusions Based on the investigated subpopulation of the German population, individual and combined NMP and NEP exposures were within acceptable ranges in the investigated timeframe. Sources of NEP exposure in the 90s and 00s remain elusive. © Springer-Verlag GmbH Germany, part of Springer Nature 2018
  • Veröffentlichung
    Harmonization of Human Biomonitoring Studies in Europe: characteristics of the HBM4EU-aligned studies participants
    (2022) Gilles, Liese; Govarts, Eva; Rodriguez Martin, Laura; Kolossa-Gehring, Marike; Peisker, Jasmin; Rucic, Enrico; Rüther, Maria; Vogel, Nina; Weber, Till
    Human biomonitoring has become a pivotal tool for supporting chemicals' policies. It provides information on real-life human exposures and is increasingly used to prioritize chemicals of health concern and to evaluate the success of chemical policies. Europe has launched the ambitious REACH program in 2007 to improve the protection of human health and the environment. In October 2020 the EU commission published its new chemicals strategy for sustainability towards a toxic-free environment. The European Parliament called upon the commission to collect human biomonitoring data to support chemical's risk assessment and risk management. This manuscript describes the organization of the first HBM4EU-aligned studies that obtain comparable human biomonitoring (HBM) data of European citizens to monitor their internal exposure to environmental chemicals. The HBM4EU-aligned studies build on existing HBM capacity in Europe by aligning national or regional HBM studies. The HBM4EU-aligned studies focus on three age groups: children, teenagers, and adults. The participants are recruited between 2014 and 2021 in 11 to 12 primary sampling units that are geographically distributed across Europe. Urine samples are collected in all age groups, and blood samples are collected in children and teenagers. Auxiliary information on socio-demographics, lifestyle, health status, environment, and diet is collected using questionnaires. In total, biological samples from 3137 children aged 6-12 years are collected for the analysis of biomarkers for phthalates, HEXAMOLL® DINCH, and flame retardants. Samples from 2950 teenagers aged 12-18 years are collected for the analysis of biomarkers for phthalates, Hexamoll® DINCH, and per- and polyfluoroalkyl substances (PFASs), and samples from 3522 adults aged 20-39 years are collected for the analysis of cadmium, bisphenols, and metabolites of polyaromatic hydrocarbons (PAHs). The children's group consists of 50.4% boys and 49.5% girls, of which 44.1% live in cities, 29.0% live in towns/suburbs, and 26.8% live in rural areas. The teenagers' group includes 50.6% girls and 49.4% boys, with 37.7% of residents in cities, 31.2% in towns/suburbs, and 30.2% in rural areas. The adult group consists of 52.6% women and 47.4% men, 71.9% live in cities, 14.2% in towns/suburbs, and only 13.4% live in rural areas. The study population approaches the characteristics of the general European population based on age-matched EUROSTAT EU-28, 2017 data; however, individuals who obtained no to lower educational level (ISCED 0-2) are underrepresented. The data on internal human exposure to priority chemicals from this unique cohort will provide a baseline for Europe's strategy towards a non-toxic environment and challenges and recommendations to improve the sampling frame for future EU-wide HBM surveys are discussed. © 2022 by the authors
  • Veröffentlichung
    German Environmental Specimen Bank: 24-hour urine samples from 1999 to 2017 reveal rapid increase in exposure to the para-phthalate plasticizer di(2-ethylhexyl) terephthalate (DEHTP)
    (2019) Lessmann, F.; Apel, Petra; Kolossa-Gehring, Marike; Rüther, Maria
    The worldwide plasticizer markets are facing constant substitution processes. Many classic ortho-phthalate plasticizers like di(2-ethylhexyl) phthalate (DEHP) are phased out, due to their proven toxicity to reproduction. Assumedly less critical, less regulated plasticizers such as di(2-ethylhexyl) terephthalate (DEHTP) are increasingly applied in consumer near products like toys, food contact materials, and medical devices. With the increasing use of DEHTP, increasing exposures of the general population have to be expected likewise. Human biomonitoring is a well-established tool to determine population exposures. In the present study we investigate the time trend of exposure to DEHTP using 24-hour urine samples of the German Environmental Specimen Bank (ESB) collected from 1999 to 2017. In these samples (60 per odd-numbered year, 600 samples in total) collected from young German adults (20-29 years, equal gender distribution) we determined four specific urinary metabolites as biomarkers of DEHTP exposure. From 1999 to 2009, the main specific urinary metabolite 5cx-MEPTP was quantifiable in <10% of the samples. Thereafter, detection rates and levels constantly increased, in line with rapidly increasing DEHTP consumption volumes. In 2017, all samples had 5cx-MEPTP levels above the limit of quantification (LOQ) with a median concentration of 3.35 ng/L (95th percentile: 12.8 ng/L). The other metabolites were detected less frequently and at lower levels but correlated well with 5cx-MEPTP robustly confirming the increasing DEHTP exposure. All 5cx-MEPTP concentrations were well below the German health based guidance value (HBM-I) of 2800 ng/L for adults. Likewise, the median calculated daily intake, based on 5cx-MEPTP measured in 2017, was 0.74 ng/kg bw*d (95th percentile: 3.86 ng/kg bw*d), still well below the tolerable daily intake (TDI) of 1000 ng/kg bw*d. Based on current toxicological knowledge we can hence conclude that for the population investigated, DEHTP exposure gives no reason for immediate concern. However, the steep ongoing increase of DEHTP exposure warrants further close monitoring in the future, preferably also in sub-populations with known higher exposures to plasticizers, especially children. © 2019 The Authors. Published by Elsevier Ltd.