Person: Vogel, Nina
Lade...
E-Mail-Adresse
Geburtsdatum
Forschungsvorhaben
Organisationseinheiten
Berufsbeschreibung
Nachname
Vogel
Vorname
Nina
Name
26 Ergebnisse
Suchergebnisse
Gerade angezeigt 1 - 10 von 26
Veröffentlichung Glyphosate and AMPA in human urine of HBM4EU-aligned studies: Part A children(2022) Buekers, Jurgen; Remy, Sylvie; Bessems, Jos; Kolossa-Gehring, Marike; Vogel, NinaFew data are available on the exposure of children to glyphosate (Gly) in Europe. Within HBM4EU, new HBM exposure data were collected from aligned studies at five sampling sites distributed over Europe (studies: SLO CRP (SI); ORGANIKO (CY); GerES V-sub (DE); 3XG (BE); ESTEBAN (FR)). Median Gly concentrations in urine were below or around the detection limit (0.1 Ìg/L). The 95th percentiles ranged between 0.18 and 1.03 Ìg Gly/L. The ratio of AMPA (aminomethylphosphonic acid; main metabolite of Gly) to Gly at molar basis was on average 2.2 and the ratio decreased with higher Gly concentrations, suggesting that other sources of AMPA, independent of metabolism of Gly to AMPA in the monitored participants, may concurrently operate. Using reverse dosimetry and HBM exposure data from five European countries (east, west and south Europe) combined with the proposed ADI (acceptable daily intake) of EFSA for Gly of 0.1 mg/kg bw/day (based on histopathological findings in the salivary gland of rats) indicated no human health risks for Gly in the studied populations at the moment. However, the absence of a group ADI for Gly+AMPA and ongoing discussions on e.g., endocrine disrupting effects cast some uncertainty in relation to the current single substance ADI for Gly. The carcinogenic effects of Gly are still debated in the scientific community. These outcomes would influence the risk conclusions presented here. Finally, regression analyses did not find clear associations between urinary exposure biomarkers and analyzed potential exposure determinants. More information from questionnaires targeting exposure-related behavior just before the sampling is needed. © 2022 by the authorsVeröffentlichung PFAS levels and determinants of variability in exposure in European teenagers - Results from the HBM4EU aligned studies (2014-2021)(2022) Richterová, Denisa; Govarts, Eva; Fábelová, L; Kolossa-Gehring, Marike; Vogel, NinaBackground Perfluoroalkyl substances (PFAS) are man-made fluorinated chemicals, widely used in various types of consumer products, resulting in their omnipresence in human populations. The aim of this study was to describe current PFAS levels in European teenagers and to investigate the determinants of serum/plasma concentrations in this specific age group. Methods PFAS concentrations were determined in serum or plasma samples from 1957 teenagers (12-18 years) from 9 European countries as part of the HBM4EU aligned studies (2014-2021). Questionnaire data were post-harmonized by each study and quality checked centrally. Only PFAS with an overall quantification frequency of at least 60% (PFOS, PFOA, PFHxS and PFNA) were included in the analyses. Sociodemographic and lifestyle factors were analysed together with food consumption frequencies to identify determinants of PFAS exposure. The variables study, sex and the highest educational level of household were included as fixed factors in the multivariable linear regression models for all PFAS and each dietary variable was added to the fixed model one by one and for each PFAS separately. Results The European exposure values for PFAS were reported as geometric means with 95% confidence intervals (CI): PFOS [2.13 (mirco)g/L (1.63-2.78)], PFOA ([0.97 (mirco)g/L (0.75-1.26)]), PFNA [0.30 (mirco)g/L (0.19-0.45)] and PFHxS [0.41 (micro)g/L (0.33-0.52)]. The estimated geometric mean exposure levels were significantly higher in the North and West versus the South and East of Europe. Boys had significantly higher concentrations of the four PFAS compared to girls and significantly higher PFASs concentrations were found in teenagers from households with a higher education level. Consumption of seafood and fish at least 2 times per week was significantly associated with 21% (95% CI: 12-31%) increase in PFOS concentrations and 20% (95% CI: 10-31%) increase in PFNA concentrations as compared to less frequent consumption of seafood and fish. The same trend was observed for PFOA and PFHxS but not statistically significant. Consumption of eggs at least 2 times per week was associated with 11% (95% CI: 2-22%) and 14% (95% CI: 2-27%) increase in PFOS and PFNA concentrations, respectively, as compared to less frequent consumption of eggs. Significantly higher PFOS concentrations were observed for participants consuming offal (14% (95% CI: 3-26%)), the same trend was observed for the other PFAS but not statistically significant. Local food consumption at least 2 times per week was associated with 40% (95% CI: 19-64%) increase in PFOS levels as compared to those consuming local food less frequently. Conclusion This work provides information about current levels of PFAS in European teenagers and potential dietary sources of exposure to PFAS in European teenagers. These results can be of use for targeted monitoring of PFAS in food. © 2022 The Authors.Veröffentlichung Risk assessment of dietary exposure to organophosphorus flame retardants in children by using HBM-Data(2022) Plichta, Veronika; Kolossa-Gehring, Marike; Steinwider, Johann; Vogel, Nina; Weber, TillDue to their extensive usage, organophosphorus flame retardants (OPFRs) have been detected in humans and in the environment. Human are exposed to OPFRs via inhalation of indoor air, dust uptake or dietary uptake through contaminated food and drinking water. Only recently, few studies addressing dietary exposure to OPFRs were published. In this study, we used human biomonitoring (HBM) data of OPFRs to estimate how much the dietary intake may contribute to the total exposure. We estimated by reverse dosimetry, the daily intake of tris (2-chloroethyl) phosphate (TCEP), tris (1-chloro-2-propyl) phosphate (TCIPP), tris (1,3-dichloro-2-propyl) phosphate (TDCIPP) for children using HBM data from studies with sampling sites in Belgium, Denmark, France, Germany, Slovenia and Slovakia. For estimating the dietary exposure, a deterministic approach was chosen. The occurrence data of selected food categories were used from a published Belgium food basket study. Since the occurrence data were left-censored, the Lower bound (LB)-Upper bound (UB) approach was used. The estimated daily intake (EDI) calculated on the basis of urine metabolite concentrations ranged from 0.03 to 0.18 (micro)g/kg bw/d for TDCIPP, from 0.05 to 0.17 (micro)g/kg bw/d for TCIPP and from 0.02 to 0.2 (micro)g/kg bw/d for TCEP. Based on national food consumption data and occurrence data, the estimated dietary intake for TDCIPP ranged from 0.005 to 0.09 (mircro)g/kg bw/d, for TCIPP ranged from 0.037 to 0.2 (mirco)g/kg bw/d and for TCEP ranged from 0.007 to 0.018 (mirco)g/kg bw/d (summarized for all countries). The estimated dietary intake of TDCIPP contributes 11-173% to the EDI, depending on country and LB-UB scenario. The estimated dietary uptake of TCIPP was in all calculations, except in Belgium and France, above 100%. In the case of TCEP, it is assumed that the dietary intake ranges from 6 to 57%. The EDI and the estimated dietary intake contribute less than 3% to the reference dose (RfD). Therefore, the estimated exposure to OPFRs indicates a minimal health risk based on the current knowledge of available exposure, kinetic and toxicity data. We were able to show that the dietary exposure can have an impact on the general exposure based on our underlying exposure scenarios. © 2022 by the authorsVeröffentlichung Human urinary arsenic species, associated exposure determinants and potential health risks assessed in the HBM4EU Aligned Studies(2023) Buekers, Jurgen; Baken, Kirsten; Govarts, Eva; Kolossa-Gehring, Marike; Vogel, NinaThe European Joint Programme HBM4EU coordinated and advanced human biomonitoring (HBM) in Europe in order to provide science-based evidence for chemical policy development and improve chemical management. Arsenic (As) was selected as a priority substance under the HBM4EU initiative for which open, policy relevant questions like the status of exposure had to be answered. Internal exposure to inorganic arsenic (iAs), measured as Toxic Relevant Arsenic (TRA) (the sum of As(III), As(V), MMA, DMA) in urine samples of teenagers differed among the sampling sites (BEA (Spain) > Riksmaten adolescents (Sweden), ESTEBAN (France) > FLEHS IV (Belgium), SLO CRP (Slovenia)) with geometric means between 3.84 and 8.47 mikrog/L. The ratio TRA to TRA + arsenobetaine or the ratio TRA to total arsenic varied between 0.22 and 0.49. Main exposure determinants for TRA were the consumption of rice and seafood. When all studies were combined, Pearson correlation analysis showed significant associations between all considered As species. Higher concentrations of DMA, quantitatively a major constituent of TRA, were found with increasing arsenobetaine concentrations, a marker for organic As intake, e.g. through seafood, indicating that other sources of DMA than metabolism of inorganic As exist, e.g. direct intake of DMA or via the intake of arsenosugars or -lipids. Given the lower toxicity of DMA(V) versus iAs, estimating the amount of DMA not originating from iAs, or normalizing TRA for arsenobetaine intake could be useful for estimating iAs exposure and risk. Comparing urinary TRA concentrations with formerly derived biomonitoring equivalent (BE) for non-carcinogenic effects (6.4 mikrog/L) clearly shows that all 95th percentile exposure values in the different studies exceeded this BE. This together with the fact that cancer risk may not be excluded even at lower iAs levels, suggests a possible health concern for the general population of Europe. © 2023 The AuthorsVeröffentlichung Exposure to phthalates in European children, adolescents and adults since 2005: a harmonized approach based on existing HBM data in the HBM4EU Initiative(2023) Kolossa-Gehring, Marike; Lange, Rosa; Murawski, Aline; Rüther, Maria; Gerofke, Antje; Schmidt, Phillipp; Springer, Andrea; Vogel, Nina; Weber, TillPhthalates are mainly used as plasticizers and are associated inter alia with adverse effects on reproductive functions. While more and more national programs in Europe have started monitoring internal exposure to phthalates and its substitute 1,2-Cyclohexanedicarboxylic acid (DINCH), the comparability of results from such existing human biomonitoring (HBM) studies across Europe is challenging. They differ widely in time periods, study samples, degree of geographical coverage, design, analytical methodology, biomarker selection, and analytical quality assurance level. The HBM4EU initiative has gathered existing HBM data of 29 studies from participating countries, covering all European regions and Israel. The data were prepared and aggregated by a harmonized procedure with the aim to describe - as comparably as possible - the EU-wide general population's internal exposure to phthalates from the years 2005 to 2019. Most data were available from Northern (up to 6 studies and up to 13 time points), Western (11; 19), and Eastern Europe (9; 12), e.g., allowing for the investigation of time patterns. While the bandwidth of exposure was generally similar, we still observed regional differences for Butyl benzyl phthalate (BBzP), Di(2-ethylhexyl) phthalate (DEHP), Di-isononyl phthalate (DiNP), and Di-isobutyl phthalate (DiBP) with pronounced decreases over time in Northern and Western Europe, and to a lesser degree in Eastern Europe. Differences between age groups were visible for Di-n-butyl phthalate (DnBP), where children (3 to 5-year olds and 6 to 11-year olds) had lower urinary concentrations than adolescents (12 to 19-year-olds), who in turn had lower urinary concentrations than adults (20 to 39-year-olds). This study is a step towards making internal exposures to phthalates comparable across countries, although standardized data were not available, targeting European data sets harmonized with respect to data formatting and calculation of aggregated data (such as developed within HBM4EU), and highlights further suggestions for improved harmonization in future studies. © 2023 by the authorsVeröffentlichung Time Patterns in Internal Human Exposure Data to Bisphenols, Phthalates, DINCH, Organophosphate Flame Retardants, Cadmium and Polyaromatic Hydrocarbons in Europe(2023) Martin, Laura Rodriguez; Gilles, Liese; Helte, Emilie; Kolossa-Gehring, Marike; Lange, Rosa; Pack, Kim Laura; Schmidt, Phillipp; Vogel, Nina; Weber, TillHuman biomonitoring (HBM) data in Europe are often fragmented and collected in different EU countries and sampling periods. Exposure levels for children and adult women in Europe were evaluated over time. For the period 2000-2010, literature and aggregated data were collected in a harmonized way across studies. Between 2011-2012, biobanked samples from the DEMOCOPHES project were used. For 2014-2021, HBM data were generated within the HBM4EU Aligned Studies. Time patterns on internal exposure were evaluated visually and statistically using the 50th and 90th percentiles (P50/P90) for phthalates/DINCH and organophosphorus flame retardants (OPFRs) in children (5-12 years), and cadmium, bisphenols and polycyclic aromatic hydrocarbons (PAHs) in women (24-52 years). Restricted phthalate metabolites show decreasing patterns for children. Phthalate substitute, DINCH, shows a non-significant increasing pattern. For OPFRs, no trends were statistically significant. For women, BPA shows a clear decreasing pattern, while substitutes BPF and BPS show an increasing pattern coinciding with the BPA restrictions introduced. No clear patterns are observed for PAHs or cadmium. Although the causal relations were not studied as such, exposure levels to chemicals restricted at EU level visually decreased, while the levels for some of their substitutes increased. The results support policy efficacy monitoring and the policy-supportive role played by HBM. © 2023 by the authorsVeröffentlichung Exposure to flame retardants in European children - results from the HBM4EU aligned studies(2023) Schyff, Veronica van der; Kalina, Jiři; Govarts, Eva; Kolossa-Gehring, Marike; Vogel, Nina; Weber, TillMany legacy and emerging flame retardants (FRs) have adverse human and environmental health effects. This study reports legacy and emerging FRs in children from nine European countries from the HBM4EU aligned studies. Studies from Belgium, Czech Republic, Germany, Denmark, France, Greece, Slovenia, Slovakia, and Norway conducted between 2014 and 2021 provided data on FRs in blood and urine from 2136 children. All samples were collected and analyzed in alignment with the HBM4EU protocols. Ten halogenated FRs were quantified in blood, and four organophosphate flame retardants (OPFR) metabolites quantified in urine. Hexabromocyclododecane (HBCDD) and decabromodiphenyl ethane (DBDPE) were infrequently detected (<16% of samples). BDE-47 was quantified in blood from Greece, France, and Norway, with France (0.36 ng/g lipid) having the highest concentrations. BDE-153 and -209 were detected in <40% of samples. Dechlorane Plus (DP) was quantified in blood from four countries, with notably high median concentrations of 16 ng/g lipid in Slovenian children. OPFR metabolites had a higher detection frequency than other halogenated FRs. Diphenyl phosphate (DPHP) was quantified in 99% of samples across 8 countries at levels ~5 times higher than other OPFR metabolites (highest median in Slovenia of 2.43 ng/g lipid). FR concentrations were associated with lifestyle factors such as cleaning frequency, employment status of the father of the household, and renovation status of the house, among others. The concentrations of BDE-47 in children from this study were similar to or lower than FRs found in adult matrices in previous studies, suggesting lower recent exposure and effectiveness of PBDE restrictions. © 2022 The AuthorsVeröffentlichung Determinants of exposure to acrylamide in European children and adults based on urinary biomarkers: results from the "European Human Biomonitoring Initiative" HBM4EU participating studies(2023) Fernández, Sandra; Poteser, Michael; Govarts, Eva; Kolossa-Gehring, Marike; Murawski, Aline; Rüther, Maria; Schmidt, Phillipp; Vogel, Nina; Weber, TillLittle is known about exposure determinants of acrylamide (AA), a genotoxic food-processing contaminant, in Europe. We assessed determinants of AA exposure, measured by urinary mercapturic acids of AA (AAMA) and glycidamide (GAMA), its main metabolite, in 3157 children/adolescents and 1297 adults in the European Human Biomonitoring Initiative. Harmonized individual-level questionnaires data and quality assured measurements of AAMA and GAMA (urine collection: 2014-2021), the short-term validated biomarkers of AA exposure, were obtained from four studies (Italy, France, Germany, and Norway) in children/adolescents (age range: 3-18 years) and six studies (Portugal, Spain, France, Germany, Luxembourg, and Iceland) in adults (age range: 20-45 years). Multivariable-adjusted pooled quantile regressions were employed to assess median differences ((beta) coefficients) with 95% confidence intervals (95% CI) in AAMA and GAMA ((micro)g/g creatinine) in relation to exposure determinants. Southern European studies had higher AAMA than Northern studies. In children/adolescents, we observed significant lower AA associated with high socioeconomic status (AAMA: (beta) = -9.1 (micro)g/g creatinine, 95% CI -15.8, -2.4; GAMA: (beta) = -3.4 (micro)g/g creatinine, 95% CI-4.7, - 2.2), living in rural areas (AAMA: (beta) = - 4.7 (micro)g/g creatinine, 95% CI - 8.6, - 0.8; GAMA: (beta) = - 1.1 (micro)g/g creatinine, 95% CI -1.9, -0.4) and increasing age (AAMA: (beta)= -1.9 (micro)g/g creatinine, 95% CI -2.4, -1.4; GAMA: (beta) = -0.7 (micro)g/g creatinine, 95% CI -0.8, -0.6). In adults, higher AAMA was also associated with high consumption of fried potatoes whereas lower AAMA was associated with higher body-mass-index. Based on this large-scale study, several potential determinants of AA exposure were identified in children/adolescents and adults in European countries. © The Author(s) 2023Veröffentlichung The role of dietary factors on blood lead concentration in children and adolescents - Results from the nationally representative German Environmental Survey 2014-2017 (GerES V)(2022) Hahn, Domenica; Höra, Christian; Kämpfe, Alexander David; Kolossa-Gehring, Marike; Schmied-Tobies, Maria Irene Hilde; Vogel, NinaIn industrialized nations, human lead exposure has decreased significantly in recent decades. Nevertheless, due to its toxic effects, this heavy metal remains a public health concern with children and adolescents being particularly at risk. In Europe nowadays, oral intake via food and drinking water is the predominant exposure pathway for lead. The objective of the present study was to investigate the association between dietary factors and blood lead (PbB) level of 3- to 17-year-old children and adolescents living in Germany, using data from the fifth German Environmental Health Survey (GerES V) and the Child and Adolescent Health Survey (KiGGS Wave 2). GerES V and KiGGS Wave 2 are two national population-representative studies conducted between 2014 and 2017, including measurement of lead concentrations in blood from 720 children and adolescents aged 3-17 years (mean age = 10.21, SD age = 4.36). Using multiple linear regression, sociodemographic and environmental characteristics as well as dietary factors could be identified as significant exposure determinants of PbB concentrations. Lead intake via domestic tap water was the strongest predictor of elevated PbB levels with 27.6% (p-value< .001) higher concentrations of highest compared to none lead intake via tap water. Other foods which were found to be relevant to PbB levels were meat, fruit, and fruit juice. While meat or fruit consumption were each associated with about 13% (p-value < .05) lower PbB levels, fruit juice drinking was associated with up to 12.2% (p-value = .04) higher PbB levels. In conclusion, results indicate the importance of dietary habits for lead exposure in children and adolescents. To protect vulnerable groups, it is recommended that future research and lead-reducing measures pay more attention to dietary links. © 2022 The Authors.Veröffentlichung Lead, cadmium, mercury, and chromium in urine and blood of children and adolescents in Germany - Human biomonitoring results of the German Environmental Survey 2014-2017 (GerES V)(2021) Doyle, Ulrike; Höra, Christian; Kämpfe, Alexander David; Kolossa-Gehring, Marike; Murawski, Aline; Rucic, Enrico; Schmied-Tobies, Maria Irene Hilde; Vogel, NinaMetals reach humans through food and drinking water intake and inhalation of airborne particles and can have detrimental health effects in particular for children. The metals presented here (lead, cadmium, chromium, and mercury) could lead to toxic effects such as neurotoxicity, mutagenicity, and have been classified as (possible) carcinogens. Using population representative data from the German Environmental Survey 2014-2017 (GerES V) from 3- to 17-year-old children on lead and cadmium in blood (n = 720) and on cadmium, chromium, and mercury in urine (n = 2250) we describe current internal exposure levels, and socio-demographic and substance-specific exposure determinants. Average internal exposure (geometric means) in blood was 9.47 (micro)g/L for lead and below 0.06 (micro)g/L (limit of quantification) for cadmium, and in urine 0.072 (micro)g/L for cadmium, 0.067 (micro)g/L for mercury, and 0.393 (micro)g/L for chromium, respectively. Younger children have higher concentrations of lead and chromium compared to 14-17-year-old adolescents, and boys have slightly higher mercury concentrations than girls. With respect to substance specific determinants, higher lead concentrations emerged in participants with domestic fuel and in non-smoking children with smokers in the household, higher levels of cadmium were associated with smoking and vegetarian diet and higher levels of mercury with the consumption of seafood and amalgam teeth fillings. No specific exposure determinants emerged for chromium. The health based guidance value HBM-I was not exceeded for mercury and for cadmium in urine it was exceeded by 0.6% of the study population. None of the exceedances was related to substantial tobacco smoke exposure. Comparisons to previous GerES cycles (GerES II, 1990-1992; GerES IV, 2003-2006) indicate continuously lower levels. © 2021 Elsevier GmbH