Person: Ruhl, Aki Sebastian
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Ruhl
First Name
Aki Sebastian
Name
41 results
Search Results
Now showing 1 - 10 of 41
Publication Persistente und mobile Stoffe im Wasserkreislauf(2023) Muschket, Matthias; Kuckelkorn, Jochen; Zahn, Daniel; Neuwald, Isabelle; Schumann, Pia; Rabe, Luisa; Ruhl, Aki SebastianPublication Simulating effluent organic matter competition in micropollutant adsorption onto activated carbon using a surrogate competitor(2018) Dittmar, Stefan; Zietzschmann, Frederik; Mai, Maike; Ruhl, Aki SebastianAdsorption onto activated carbon is a promising option for removing organic micropollutants (OMPs) from wastewater treatment plant (WWTP) effluents. The heterogeneity of activated carbons and adsorption competition between OMPs and adsorbable compounds of the effluent organic matter (EfOM) complicate the prediction of OMP removals. Thus, reliable and simple test systems are desirable. For this study, batch experiments with powdered activated carbon (PAC) were carried out to examine methyl orange (MO) as a selected surrogate competitor to simulate EfOM adsorption competition. MO solutions were spiked with carbamazepine (CBZ) as an indicator substance for well-adsorbing OMPs. On the basis of CBZ adsorption isotherms in WWTP effluents, MO concentrations for batch test solutions with identical adsorption competition toward CBZ were calculated. The calculations were performed according to an empirical model of CBZ adsorption in the presence of MO, since predictions employing the ideal adsorbed solution theory (IAST) proved to be inaccurate. Comparative batch tests with five different PACs were conducted with WWTP effluent and respective MO batch test solutions. Except for one PAC, the achieved CBZ removals were very similar in WWTP effluent and the test solution. Additionally, a universal correlation between MO and CBZ removals was found for four PACs. Quelle: https://pubs.acs.org/Publication Comparing fine particulate iron hydroxide adsorbents for the removal of phosphate in a hybrid adsorption/ultrafiltration system(2019) Hilbrandt, Inga; Shemer, Hilla; Ruhl, Aki SebastianThe use of micro-sized iron hydroxide adsorbents in mixed reactors is a promising technique for the removal of inorganic contaminants from wastewater within minutes of contact time. This study focusses on phosphate adsorption onto fine fraction granular ferric hydroxide (nGFH) and iron oxy(hydr)oxide agglomerates (IOAs) in a reactor with submerged ultrafiltration (UF) membrane. The performance of the hybrid adsorption/UF membrane system was evaluated for various adsorbents and phosphate concentrations, residence times and concentrations of co-existing ions. The membrane was not fouled at the experimental conditions used (up to 6.3 g/L adsorbent). Phosphate loadings of 20 and 60 mg P/g Fe (36.1 and 108.3 mol P/mol Fe) were reached for nGFH and IOAs, respectively (C0(P) = 4.5 mg/L, deionized water at pH 8, C(Fe) = 0.6 g/L). A shortened residence time of 15 min in the reactor led to a decrease in final loading of 6 mg/g compared to 30 min residence time (54 mg/g compared to 60 mg/g). An extension to 60 min did not result in higher loadings. An increase in adsorbent (IOA) concentration from 0.1 to 0.3 mg/L resulted in an increase of phosphate removal (27 to 35%). Simultaneously, loadings decreased from 50 to 35 mg/g. The application of the developed process for the treatment of artificial secondary effluent resulted in an increase of 87 and 60% in treated volumes until breakthrough (50%) for nGFH and IOAs, respectively, compared to deionized water. Thus, the combined process of adsorption and particle separation using a submerged membrane can be well adjusted according to water composition, initial pollutant concentrations and desired removals. © 2019 Elsevier B.V. All rights reserved.Publication Pilot-scale vanadium adsorption onto in-situ biogenic amorphous ferric hydroxide(2023) Mahringer, Daniel; Ruhl, Aki Sebastian; Zerelli, Sami SofieneIn order to reach 4 (micro)g l-1 vanadium in drinking water adsorption onto in-situ biogenic amorphous ferric hydroxide (AFH) is identified as robust new treatment. The evaluation of its technical feasibility and robustness was the aim of this study. As approach at pilot-scale, Fe(II) and oxygen was dosed before pilot waterworks and Fe(II) subsequently biotically oxidized and precipitated in a filter bed. The so in-situ generated biogenic AFH served as adsorbent for vanadium removal. Results show that an initial vanadium concentration of 30 (micro)g l-1 was removed to below 4 (micro)g l-1, if at least 3 mg l-1 Fe(II) were dosed, resulting in a loading of 8.7 mg V per g AFH. A vanadium concentration of 60 (micro)g l-1 with a dosage of 3 mg l-1 Fe(II) was the upper limit for sufficient removal. Vanadium removal increased with increasing pH in the technical setup, due to faster oxidation of Fe(II) in the supernatant, even though adsorption capacity of AFH decreases with increasing pH. A filtration velocity of 20 m h -1 represented the highest velocity to undercut 4 (micro)g l-1 vanadium in the effluent. By mixing Fe(II) containing groundwater with oxygen and vanadium containing water prior to an adsorption filter with AFH sufficient removal was reached, however dependent on the resulting Fe(II) concentration. © 2023 by the authorsPublication Polystyrene Microplastics modulate the toxicity of the hydrophilic insecticide Thiacloprid for Chironomid Larvae and also influence their burrowing behavior(2022) Krais, Stefanie; Anthes, Nils; Huppertsberg, Sven; Ruhl, Aki SebastianAs there is still little knowledge of interactions between microplastics (MP) and hydrophilic compounds, we propose ways the toxicity of hydrophilic pesticides can be modulated by MP, when sorption can be excluded. Larvae of Chironomus riparius were exposed to thiacloprid (TH, 1 mikrog/L) and polystyrene microplastic particles (PS; <50 mikrom; 150,000 and 1,000,000 particles/L) for 96 h, solely or in co-exposure. Burrowing behavior and mortality were observed. Larvae in treatments containing PS established themselves quicker in the sediment and kept the ability to rebury for a longer time compared to control and TH, respectively. While TH elevated the mortality, exposure to PS alone did not affect the survival of the larvae. In co-exposure of TH and PS, a concentration of 150,000 particles/L significantly reduced the toxicity of 1 mikrog/L TH after 96 h, an effect that was not observed at 1,000,000 particles/L. Therefore, we hypothesize that this modulation of the toxicity of TH eventually may have resulted from a combination of a "protective MP layer" in the gut and a higher retention time of particles in larvae exposed to 150,000 particles/L than in those exposed to 1,000,000 particles/L due to the lower number of ingestible particles in the former. © 2022 by the authorsPublication Perfluoroalkyl substances (PFAS) adsorption in drinking water by granular activated carbon: Influence of activated carbon and PFAS characteristics(2021) Cantoni, Beatrice; Turolla, Andrea; Ruhl, Aki Sebastian; Wellmitz, JörgPerfluoroalkyl substances (PFAS) persistence in the environment leads to their presence in drinking water, that is of high concern due to their potential human health risk. Adsorption onto activated carbon (AC) has been identified as an effective technique to remove PFAS. Adsorption isotherms and breakthrough curves, determined by rapid small-scale column tests (RSSCTs), were studied for eight PFAS and four granular ACs, characterized by different origins, porosities and numbers of reactivation cycles. Both batch and RSSCT results highlighted the strong interaction of AC and PFAS characteristics in adsorption capacity. The most important factor affecting AC performance is the surface charge: a positively-charged AC showed higher adsorption capacities with greater Freundlich constants (KF) and later 50% breakthroughs compared to the AC with neutral surface. Among the positively-charged ACs, a microporous AC demonstrated higher adsorption capacities for hydrophilic and marginally hydrophobic PFAS, while the mesoporous AC performed better for more hydrophobic PFAS, possibly due to lower pore blockage by organic matter. These results were confirmed at full-scale through a one-year monitoring campaign, in which samples were collected at the inlets and outlets of GAC systems in 17 drinking water treatment plants spread in a wide urban area, where the four analyzed ACs are used. © 2021 Elsevier B.V.Publication Entwicklung neuer Filtermaterialien zur Entfernung von Chromat(2018) Massa, Lukas; Höhne, A.; Bahr, Carsten; Ruhl, Aki Sebastian; Deutschland. Umweltbundesamt. Fachgebiet II.3.1 - Nationale und internationale Fortentwicklung der Trinkwasserhygiene; TrinkwasserressourcenPublication Fate of leaf litter deposits and impacts on oxygen availability in bank filtration column studies(2018) Bayarsaikhan, Uranchimeg; Filter, Josefine; Gernert, Ulrich; Ruhl, Aki SebastianDegradation of particulate organic carbon (POC) such as leaf litter might deplete dissolved oxygen within the upper layers of bank filtration, an efficient and robust barrier for pathogens and for various organic micro-pollutants (OMP) in water supply systems worldwide. The degradation of OMP during bank filtration depends on the redox conditions. The present study aimed at identifying the impacts and fates of different local leaves on the oxygen consumption and the possible biological degradation of indicator OMP. Oxygen concentrations initially decreased within the columns from around 8 mg/L in the influent to low concentrations indicating extensive consumption within a short travel distance. Still a substantial oxygen consumption was observed after 250 days. OMP concentrations were not significantly affected by the microbial processes. A layer of calcium carbonate crystallites was observed on the POC layer. Some leaf fragments appeared to be persistant towards degradation and the carbon content relative to nitrogen and sulfur contents decreased within 250 days. The results demonstrate that trees at bank filtration sites might have a strong long-term impact on the subsurface redox conditions. © 2018 Elsevier Inc. All rights reserved.Publication Pilot scale hexavalent chromium removal with reduction, coagulation, filtration and biological iron oxidation(2020) Dippon-Deissler, Urs; Mahringer, Daniel; Ruhl, Aki Sebastian; Zerelli, Sami SofieneCr(VI) is identified as highly toxic, therefore a far-reaching limitation of total chromium or Cr(VI) in drinking water was proposed by the Germany Environment Agency. There is a lack in efficient treatment processes to reach Cr(VI) concentrations below 1 (my)g L-1. In this study, the combination of chemical reduction, coagulation and filtration (RCF) was further developed by adding biological iron removal as filtration step (RCbF). The aim of this enhancement was to reach lower effluent concentrations and a higher robustness regarding process parameters. The effectiveness of Cr(VI) removal was investigated using two-stage pilot-scale waterworks. RCbF reaches Cr(VI) effluent concentrations below 0.5 (my)g L-1 despite variations of pH, filtration velocity, or Cr(VI) influent concentrations. Fe(II) dosage and hence molar excess of Fe(II) over Cr(VI) was identified as the key parameter for Cr(VI) removal. Low oxygen dosage for biological iron removal improved the efficiency of RCbF compared to RCF. The co-precipitation of Cr(III) and Fe(III) as solid solution in the supernatant of the filter bed was promoted by low oxygen concentrations making Cr(VI) the preferred oxidant. RCbF was shown to be a suitable treatment process for reaching a low limit value for total chromium or Cr(VI) concerning technical feasibility. © 2020 The Authors.Publication Varying attenuation of trace organic chemicals in natural treatment - a review of key influential factors(2021) Filter, Josefine; Zhiteneva, Veronika; Ruhl, Aki Sebastian; Vick, CarstenThe removal of trace organic chemicals (TOrCs) from treated wastewater and impacted surface water through managed aquifer recharge (MAR) has been extensively studied under a variety of water quality and operating conditions and at various experimental scales. The primary mechanism thought to dictate removal over the long term is biodegradation by microorganisms present in the system. This review of removal percentages observed in biologically active filtration systems reported in the peer-reviewed literature may serve as the basis to identify future indicators for persistence, as well as variable and efficient removal in MAR systems. A noticeable variation in reported removal percentages (standard deviation above 30%) was observed for 24 of the 49 most commonly studied TOrCs. Such variations suggest a rather inconsistent capacity of biologically active filter systems to remove these TOrCs. Therefore, operational parameters such as the change in dissolved organic carbon ((Delta)DOC) during treatment, hydraulic retention time (HRT), filter material, and redox conditions were correlated to the associated TOrC removal percentages to determine whether a data-based relationship could be elucidated. Interestingly, 11 out of the 24 compounds demonstrated increased removal with increasing (Delta)DOC concentrations. Furthermore, 10 compounds exhibited a positive correlation with HRT. Based on the evaluated data, a minimum HRT of 0.5-1 day is recommended for removal of most compounds. © 2021 Elsevier Ltd.