Person:
Wieck, Stefanie

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Forschungsvorhaben
Berufsbeschreibung
Nachname
Wieck
Vorname
Stefanie
Name

Suchergebnisse

Gerade angezeigt 1 - 2 von 2
  • Veröffentlichung
    Evaluation of the DBP formation potential of biocides and identification of knowledge gaps in environmental risk assessment
    (2023) Usman, Muhammad; Hüben, Michael; Hahn, Stefan; Kehrer-Berger, Anja; Wieck, Stefanie
    Disinfectants and preservatives used as biocides may contain or release active substances (a.s.) that can form by-products with the surrounding matrices during their application which may be released into the environment. Over the past 40 years, several hundred of these so-called disinfection by-products (DBPs) have been detected after applications of biocides used for disinfection. Due to intensive research and further development of analytical capabilities, many new DBP classes, such as iodinated DBPs (I-DBPs), halonitromethanes (HNMs), haloacetamides (HaAms), or halomethanesulfonic acids were detected worldwide in various matrices and applications. Due to the possible hazards and risks for humans and the environment, frequently occurring DBP classes, such as trihalomethanes (THM), haloacetic acids (HAA) and nitrosamines (NDMA), have already been included in many legislations and given limit values. In the European Union, biocides are assessed under the Biocidal Products Regulation 528/2012 (BPR) regarding their efficacy, potential hazards, and risks to human health and the environment. However, the available guidance for the environmental risk assessment (ERA) of DBPs remains vague. To identify knowledge gaps and to further develop the assessment scheme for the ERA of DBPs, a literature search on the multiple uses of biocides and their formation potential of DBPs was performed and the existing process for ERA was evaluated. The results show knowledge gaps on the formation of DBP in non-aqueous systems and DBP formation by non-halogen-based biocidal active substances. Based on the literature research on biocides, a possible proposal of grouping a.s. to consider their DBP formation potential is presented to simplify future ERAs. However, this also requires further research. Until then, a pragmatic approach considering the DBPs formation potential of the active substances and the identified knowledge gaps need to be established for the environmental risk assessment of DBPs in the EU. © The Author(s) 2023
  • Veröffentlichung
    In search of the Holy Grail of Rodent control: step-by-step implementation of safe and sustainable-by-design principles on the example of rodenticides
    (2022) Hohenberger, Johannes; Friesen, Anton; Wieck, Stefanie
    The field of chemical rodent control has seen no major developments in the last decades, even though anticoagulant rodenticides (AR), the mainly used substances to manage mice and rats, are known environmental pollutants and candidates for substitution under the European Biocidal Products Regulation 528/2012. Moreover, recent political developments in Europe and the USA demand more safety and sustainability in the management of chemicals, reinforcing the need for environmentally friendly substances. In this concept study, we present a step-by-step approach to improve the environmental properties of rodenticides. Repurposing of existing pharmaceuticals, the use of enantiomerically pure rodenticides, or the improvement of the formulation by microencapsulation can help to alleviate environmental problems caused by AR in the short term. Modification of the chemical structures or the development of prodrugs as medium-term strategies can further improve environmental properties of existing compounds. Ultimately, the development of new substances from scratch enables the utilisation of so far ignored modes of actions and the application of modern safe and sustainable-by-design principles to improve target specificity and reduce the negative impact on non-target organisms and the environment. Overall, our concept study illustrates the great potential for improvement in the field of chemical rodent control when applying available techniques of green and sustainable chemistry to known or potential rodenticides. Most promising in the medium term is microencapsulation that would allow for the use of acutely acting substances as it could circumvent bait shyness. On a longer timescale the de novo design of new rodenticides, which is the only method that can combine a high target specificity with good environmental properties, is the most promising approach. © 2022 The Authors