Person:
Treu, Gabriele

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Forschungsvorhaben
Berufsbeschreibung
Nachname
Treu
Vorname
Gabriele
Name

Suchergebnisse

Gerade angezeigt 1 - 2 von 2
  • Veröffentlichung
    Spatial variation of rodenticides and emerging contaminants in blood of raptor nestlings from Germany
    (2022) Badry, Alexander; Schenke, Detlef; Brücher, Helmut; Treu, Gabriele
    Wildlife exposures to pest controlling substances have resulted in population declines of many predatory species during the past decades. Many pesticides were subsequently classifed as persistent, bioaccumulative, and toxic (PBT) and banned on national or global scales. However, despite their risks for non-target vertebrate wildlife, PBT substances such as anticoagulant rodenticides (ARs) are still permitted for use in Europe and have shown to threaten raptors. Whereas risks of ARs are known, much less information is available on emerging agrochemicals such as currently used PPPs and medicinal products (MPs) in higher trophic level species. We expect that currently used PPPs are relatively mobile (vs. lipophilic) as a consequence of the PBT criteria and thus more likely to be present in aqueous matrices. We therefore analyzed blood of 204 raptor nestlings of three terrestrial (red kite, common buzzard, Montagu's harrier) and two aquatic species (white-tailed sea eagle, osprey) from Germany. In total, we detected ARs in 22.6% of the red kites and 8.6% of the buzzards, whereas no Montagu's harriers or aquatic species were exposed prior to sampling. Sigma AR concentration tended to be higher in North Rhine-Westphalia (vs. North-Eastern Germany) where population density is higher and intense livestock farming more frequent. Among the 90 targeted and currently used PPPs, we detected six substances from which bromoxynil (14.2%) was most frequent. Especially Montagu's harrier (31%) and red kites (22.6%) were exposed and concentrations were higher in North Rhine-Westphalia as well. Among seven MPs, we detected ciprofoxacin (3.4%), which indicates that risk mitigation measures may be needed as resistance genes were already detected in wildlife from Germany. Taken together, our study demonstrates that raptors are exposed to various chemicals during an early life stage depending on their sampling location and underpins that red kites are at particular risk for multiple pesticide exposures in Germany. © The Author(s) 2022
  • Veröffentlichung
    A critical review of bioaccumulation and biotransformation of organic chemicals in birds
    (2022) Kuo, Dave T. F.; Deutsch, Markus; Rattner, Barnett A.; Marteinson, Sarah C.; Treu, Gabriele
    A literature review of bioaccumulation and biotransformation of organic chemicals in birds was undertaken, aiming to support scoping and prioritization of future research. The objectives were to characterize available bioaccumulation/biotransformation data, identify knowledge gaps, determine how extant data can be used, and explore the strategy and steps forward. An intermediate approach balanced between expediency and rigor was taken given the vastness of the literature. Following a critical review of [500 peer-reviewed studies, [25,000 data entries and 2 million information bytes were compiled on [700 organic compounds for * 320 wild species and 60 domestic breeds of birds. These data were organized into themed databases on bioaccumulation and biotransformation, field survey, microsomal enzyme activity, metabolic pathway, and bird taxonomy and diet. Significant data gaps were identified in all databases at multiple levels. Biotransformation characterization was largely fragmented over metabolite/pathway identification and characterization of enzyme activity or biotransformation kinetics. Limited biotransformation kinetic data constrained development of an avian biotransformation model. A substantial shortage of in vivo biotransformation kinetics has been observed as most reported rate constants were derived in vitro. No metric comprehensively captured all key contaminant classes or chemical groups to support broad-scope modeling of bioaccumulation or biotransformation. However, metrics such as biota-feed accumulation factor, maximum transfer factor, and total elimination rate constant were more readily usable for modeling or benchmarking than other reviewed parameters. Analysis demonstrated the lack of bioaccumulation/biotransformation characterization of shorebirds, seabirds, and raptors. In the study of bioaccumulation and biotransformation of organic chemicals in birds, this review revealed the need for greater chemical and avian species diversity, chemical measurements in environmental media, basic biometrics and exposure conditions, multiple tissues/matrices sampling, and further exploration on biotransformation. Limitations of classical bioaccumulation metrics and current research strategies used in bird studies were also discussed. Forward-looking research strategies were proposed: adopting a chemical roadmap for future investigations, integrating existing biomonitoring data, gap-filling with non-testing approaches, improving data reporting practices, expanding field sampling scopes, bridging existing models and theories, exploring biotransformation via avian genomics, and establishing an online data repository. The Author(s) 2022