Person: Meyer-Grünefeldt, Maren
Lade...
ORCID
Nachname
Meyer-Grünefeldt
Vorname
Maren
Affiliation
Deutschland, Umweltbundesamt, Fachgebiet II.4.3 - Luftreinhaltung und terrestrische Ökosysteme
Forschungsvorhaben
Organisationseinheiten
1 Ergebnisse
Suchergebnisse
Gerade angezeigt 1 - 1 von 1
Veröffentlichung Marginal Calluna populations are more resistant to climate change, but not under high-nitrogen loads(2016) Belz, Kristina; Calvo, Leonor; Oheimb, Goddert von; Meyer-Grünefeldt, Maren; Härdtle, WernerThe dominant plant species of European heathlands Calluna vulgarisis considered vulnerable to drought and enhanced nitrogen (N) loads. However, impacts may vary across the distribution range of Callunaheathlands. We tested the hypothesis that Callunaof southern and eastern marginal populations (MP) are more resistant to drought events than plants of central populations (CP), and that this is mainly due to trait differences such as biomass allocation patterns. Furthermore, we hypothesised that N fertilisation can offset differences in drought susceptibility between CP and MP. We conducted a full-factorial 2-year greenhouse experiment with Calluna plants of CP and MP and quantified growth responses in terms of biomass production, allocation and tissue ä13C signatures. Biomass production, shoot-root ratios and tissue ä13C values of 1-year-old plants were higher for CP than for MP, indicating a higher drought susceptibility of CP. These trait differences were not observed for 2-year-old plants. N fertilisation increased shoot-root ratios of 1- and 2-year-old plants and across populations due to a stimulation of the aboveground biomass allocation. As a consequence, population-related differences in drought susceptibility were offset for N-fertilised plants. We concluded that Callunaplants originating from different populations developed adaptive traits to local climates, which determined their drought sensitivity. However, the higher drought resistance of MP can be attenuated by an N-induced increase in shoot-root ratios. This suggests that analyses on plant growth responses to global change should include multi-factor approaches with a focus on different populations throughout a species distribution range.Quelle: http://link.springer.com