Person:
Maletzki, Dirk

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Forschungsvorhaben
Berufsbeschreibung
Nachname
Maletzki
Vorname
Dirk
Name

Suchergebnisse

Gerade angezeigt 1 - 3 von 3
  • Veröffentlichung
    Zur Sonderstellung von Antibiotika bei der Gewässerbelastung durch Arzneimittel
    (2016) Baumann, Michaela; Weiß, Klaus; Maletzki, Dirk; Schuessler, Walter; Polleichtner, Christian; Schudoma, Dieter
  • Veröffentlichung
    LogD-based modelling and "Delta"logD as a proxy for pH-dependent action of ionizable chemicals reveal the relevance of both neutral and ionic species for fish embryotoxicity and possess great potential for practical application in the regulation of chemicals
    (2023) Köhler, Heinz R.; Gräff, Thomas; Schweizer, Mona; Maletzki, Dirk; Kühnen, Ute; von der Ohe, Peter C.
    Depending on the ambient pH, ionizable substances are present in varying proportions in their neutral or charged form. The extent to which these two chemical species contribute to the pH-dependant toxicity of ionizable chemicals and whether intracellular ion trapping has a decisive influence in this context is controversially discussed. Against this background, we determined the acute toxicity of 24 ionizable substances at up to 4 different pH values on the embryonic development of the zebrafish, Danio rerio, and supplemented this dataset with additional data from the literature. The LC50 for some substances (diclofenac, propranolol, fluoxetine) differed by a factor of even >103 between pH5 and pH9. To simulate the toxicity of 12 acids and 12 bases, six models to calculate a pH-dependant logD value as a proxy for the uptake of potentially toxic molecules were created based on different premises for the trans-membrane passage and toxic action of neutral and ionic species, and their abilities to explain the real LC50 data set were assessed. Using this approach, we were able to show that both neutral and charged species are almost certainly taken up into cells according to their logD-based distribution, and that both species exert toxicity. Since two of the models that assume all intracellular molecules to be neutral overestimated the real toxicity, it must be concluded, that the toxic effect of a single charged intracellularly present molecule is, on the average, lower than that of a single neutral molecule. Furthermore, it was possible to attribute differences in toxicity at different pH values for these 24 ionizable substances to the respective deltas in logD at these pH levels with high accuracy, enabling particularly a full logD-based model on the basis of logPow as a membrane passage descriptor to be used for predicting potential toxicities in worst-case scenarios from existing experimental studies, as stipulated in the process of registration of chemicals and the definition of Environmental Quality Standards (EQS). © 2023 The Author(s).
  • Veröffentlichung
    Testing the bioaccumulation potential of manufactured nanomaterials in the freshwater amphipod Hyalella azteca
    (2021) Kühr, Sebastian; Kaegi, Rälf; Maletzki, Dirk
    Standardized experimental approaches for the quantification of the bioaccumulation potential of nanomaterials in general and in (benthic) invertebrates in particular are currently lacking. We examined the suitability of the benthic freshwater amphipod Hyalella azteca for the examination of the bioaccumulation potential of nanomaterials. A flow-through test system that allows the generation of bioconcentration and biomagnification factors was applied. The feasibility of the system was confirmed in a 2-lab comparison study. By carrying out bioconcentration and biomagnification studies with gold, titanium dioxide and silver nanoparticles as well as dissolved silver (AgNO3) we were able to assess the bioaccumulation potential of different types of nanomaterials and their exposure pathways. For this, the animals were examined for their total metal body burden using inductively coupled mass spectroscopy (ICP-MS) and for the presence of nanoparticulate burdens using single-particle ICP-MS. The role of released ions was highlighted as being very important for the bioavailability and bioaccumulation of metals from nanoparticles for both examined uptake paths examined (bioconcentration and biomagnification). In 2018 a tiered testing strategy for engineered nanomaterials was proposed by Handy et al. that may allow a waiver of bioaccumulation fish studies using inter alia invertebrates. Data gained in studies carried out with invertebrates like the developed Hyalella azteca test may be included in this proposed tiered testing strategy. © 2020 The Author(s)