Person:
Kura, Jürgen

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Forschungsvorhaben
Berufsbeschreibung
Nachname
Kura
Vorname
Jürgen
Name

Suchergebnisse

Gerade angezeigt 1 - 4 von 4
  • Veröffentlichung
    Vorkommen und Quellen ultrafeiner Partikel im Innenraum und in der Außenluft - aktueller Kenntnisstand
    (2020) Birmili, Wolfram; Daniels, Anja; Hoffmann, Stephan; Kura, Jürgen; Niemeyer, Thomas; Pietsch, Axel
    Ultrafeine Partikel (UFP) sind als Partikel mit einem Durchmesser kleiner als 100 Nanometer definiert. Aufgrund ihrer toxikologischen Eigenschaften stellen sie ein ungebrochen aktuelles Thema in der Luftreinhaltung dar. Diese Arbeit stellt die wichtigsten Grundlagen zu UFP in der Umwelt zusammen und schafft einen Überblick über Messtechniken und vorhandene Messdaten. Hierbei liegen die Schwerpunkte auf der Innenraumluft und der Außenluft. Inzwischen stehen eine Reihe standardisierter Messverfahren für UFP zur Verfügung. Zukünftige messtechnische Entwicklungen sind jedoch notwendig, um mehr personenbezogene bzw. flächenhafte Daten von UFP zu gewinnen. Mit dem German Ultrafine Aerosol Network (GUAN) besteht seit 2009 ein kooperatives Messnetz für die Außenluft, aus dem Mittelwerte, räumliche Schwankungen und zeitliche Trends für UFP abgeleitet werden konnten. Für den Innenraum werden Ergebnisse aus zwei neuen Studien vorgestellt: Die Innenraum-/Außenluftstudie des Instituts für Troposphärenforschung (TROPOS), sowie die Deutsche Umweltstudie zur Gesundheit von Kindern und Jugendlichen (GerES V). Aus beiden Studien wird klar, dass auch die Partikelanzahlkonzentration im Innenraum großen Schwankungen unterliegen kann, und dass Innenraumquellen, wie Feuerquellen, Kerzenabbrand, Tabakrauch und Kochaktivitäten, zu erhöhten UFP-Konzentrationen beitragen. Aus zweijährigen Messungen in 40 Wohnungen konnten jedoch keine Anzeichen abgeleitet werden, dass die UFP-Belastung im Innenraum systematisch höher wäre als in der Außenluft. Generell fehlt es momentan an einer belastbaren Dosis-Wirkungs-Beziehung für UFP sowohl im Innenraum als auch in der Außenluft. Daraus ergibt sich für die kommenden Jahre der Auftrag an die Wissenschaft, gezielte Studien zur Erforschung der gesundheitlichen Wirkungen von UFP aus der Umwelt durchzuführen. Quelle: Vorkommen und Quellen ultrafeiner Partikel im Innenraum und in der Außenluft - aktueller Kenntnisstand / W. Birmili [und neun weitere]. - 1 Onlineressource (Seiten 33-43). In: Gefahrstoffe, Reinhaltung der Luft / Berufsgenossenschaftliches Institut für Arbeitssicherheit. - 80 (2020), Heft 1-2, Seite 33
  • Veröffentlichung
    Indoor VOCs, aldehydes and particle measurements in the German Environmental Survey for Children and Adolescents (GerES), 2014-2017
    (2019) Bethke, Robert; Birmili, Wolfram; Brenske, Klaus-Reinhard; Conrad, André; Daniels, Anja; Kolossa-Gehring, Marike; Kura, Jürgen; Miethig, Stefan; Neumann, Konrad; Niemeyer, Thomas; Pietsch, Axel; Rucic, Enrico; Schechner, Nadine
  • Veröffentlichung
    BAERLIN2014
    (2018) Gerwig, Holger; Kura, Jürgen; Schneidemesser, Erika von; Lüdecke, Anja; Bonn, Boris; Pietsch, Axel; Ehlers, Christian
    The "Berlin Air quality and Ecosystem Research: Local and long-range Impact of anthropogenic and Natural hydrocarbons" (BAERLIN2014) campaign was conducted during the 3 summer months (June-August) of 2014. During this measurement campaign, both stationary and mobile measurements were undertaken to address complementary aims. This paper provides an overview of the stationary measurements and results that were focused on characterization of gaseous and particulate pollution, including source attribution, in the Berlin-Potsdam area, and quantification of the role of natural sources in determining levels of ozone and related gaseous pollutants. Results show that biogenic contributions to ozone and particulate matter are substantial. One indicator for ozone formation, the OH reactivity, showed a 31% (0.82 +/- 0.44s-1) and 75% (3.7 +/- 0.90s-1) contribution from biogenic non-methane volatile organic compounds (NMVOCs) for urban background (2.6 +/- 0.68s-1) and urban park (4.9 +/- 1.0s-1) location, respectively, emphasizing the importance of such locations as sources of biogenic NMVOCs in urban areas. A comparison to NMVOC measurements made in Berlin approximately 20 years earlier generally show lower levels today for anthropogenic NMVOCs. A substantial contribution of secondary organic and inorganic aerosol to PM10 concentrations was quantified. In addition to secondary aerosols, source apportionment analysis of the organic carbon fraction identified the contribution of biogenic (plant-based) particulate matter, as well as primary contributions from vehicles, with a larger contribution from diesel compared to gasoline vehicles, as well as a relatively small contribution from wood burning, linked to measured levoglucosan. © Author(s) 2018.
  • Veröffentlichung
    BAERLIN2014 - the influence of land surface types on and the horizontal heterogeneity of air pollutant levels in Berlin
    (2016) Bonn, Boris; Schneidemesser, Erika von; Andrich, Dorota; Quedenau, Joern; Gerwig, Holger; Ehlers, Christian; Klemp, Dieter; Kofahl, Claudia; Nothard, Rainer; Kura, Jürgen; Kerschbaumer, Andreas; Junkermann, Wolfgang; Grote, Rüdiger; Lüdecke, Anja; Pohl, Tobias; Weber, Konradin; Pietsch, Axel; Lode, Birgit; Schönberger, Philipp; Churkina, Galina; Butler, Tim M.; Lawrence, Mark G.
    Urban air quality and human health are among the key aspects of future urban planning. In order to address pollutants such as ozone and particulate matter, efforts need to be made to quantify and reduce their concentrations. One important aspect in understanding urban air quality is the influence of urban vegetation which may act as both emitter and sink for trace gases and aerosol particles. In this context, the "Berlin Air quality and Ecosystem Research: Local and long-range Impact of anthropogenic and Natural hydrocarbons 2014" (BAERLIN2014) campaign was conducted between 2 June and 29 August in the metropolitan area of Berlin and Brandenburg, Germany. The predominant goals of the campaign were (1) the characterization of urban gaseous and particulate pollution and its attribution to anthropogenic and natural sources in the region of interest, especially considering the connection between biogenic volatile organic compounds and particulates and ozone; (2) the quantification of the impact of urban vegetation on organic trace gas levels and the presence of oxidants such as ozone; and (3) to explain the local heterogeneity of pollutants by defining the distribution of sources and sinks relevant for the interpretation of model simulations. In order to do so, the campaign included stationary measurements at urban background station and mobile observations carried out from bicycle, van and airborne platforms. This paper provides an overview of the mobile measurements (Mobile BAERLIN2014) and general conclusions drawn from the analysis. Bicycle measurements showed micro-scale variations of temperature and particulate matter, displaying a substantial reduction of mean temperatures and particulate levels in the proximity of vegetated areas compared to typical urban residential area (background) measurements. Van measurements extended the area covered by bicycle observations and included continuous measurements of O3, NOx, CO, CO2 and point-wise measurement of volatile organic compounds (VOCs) at representative sites for traffic- and vegetation-affected sites. The quantification displayed notable horizontal heterogeneity of the short-lived gases and particle number concentrations. For example, baseline concentrations of the traffic-related chemical species CO and NO varied on average by up to ş22.2 and ş63.5 %, respectively, on the scale of 100m around any measurement location. Airborne observations revealed the dominant source of elevated urban particulate number and mass concentrations being local, i.e., not being caused by long-range transport. Surface-based observations related these two parameters predominantly to traffic sources. Vegetated areas lowered the pollutant concentrations substantially with ozone being reduced most by coniferous forests, which is most likely caused by their reactive biogenic VOC emissions. With respect to the overall potential to reduce air pollutant levels, forests were found to result in the largest decrease, followed by parks and facilities for sports and leisure. Surface temperature was generally 0.6-2.1 ˚C lower in vegetated regions, which in turn will have an impact on tropospheric chemical processes. Based on our findings, effective future mitigation activities to provide a more sustainable and healthier urban environment should focus predominantly on reducing fossilfuel emissions from traffic as well as on increasing vegetated areas. © Author(s) 2016.