Person: Apel, Petra
Lade...
E-Mail-Adresse
Geburtsdatum
Forschungsvorhaben
Organisationseinheiten
Berufsbeschreibung
Nachname
Apel
Vorname
Petra
Name
15 Ergebnisse
Suchergebnisse
Gerade angezeigt 1 - 10 von 15
Veröffentlichung Human Biomonitoring Guidance Values (HBM-GVs) for bisphenol S and assessment of the risk due to the exposure to bisphenols A and S, in Europe(2022) Meslin, Matthieu; Apel, Petra; Beausoleil, Claire; Zeman, Florence Anna; Kolossa-Gehring, MarikeWithin the European Joint Programme HBM4EU, Human Biomonitoring Guidance Values (HBM-GVs) were derived for several prioritised substances. In this paper, the derivation of HBM-GVs for the general population (HBM-GVGenPop) and workers (HBM-GVworker) referring to bisphenol S (BPS) is presented. For the general population, this resulted in an estimation of the total urinary concentration of BPS of 1.0 Ìg/L assuming a 24 h continuous exposure to BPS. For workers, the modelling was refined in order to reflect continuous exposure during the working day, leading to a total urinary concentration of BPS of 3.0 Ìg/L. The usefulness for risk assessment of the HBM-GVs derived for BPS and bisphenol A (BPA) is illustrated. Risk Characterisation Ratios (RCRs) were calculated leading to a clear difference between risk assessments performed for both bisphenols, with a very low RCR regarding exposure to BPA., contrary to that obtained for BPS. This may be due to the endocrine mediated endpoints selected to derive the HBM-GVs for BPS, whereas the values calculated for BPA are based on the temporary Tolerable Daily Intake (t-TDI) from EFSA set in 2015. A comparison with the revised TDI recently opened for comments by EFSA is also discussed. Regarding the occupational field, results indicate that the risk from occupational exposure to both bisphenols cannot be disregarded. © 2022 by the authorsVeröffentlichung Human Biomonitoring Initiative (HBM4EU): Human Biomonitoring Guidance Values Ddived for dmethylformamide(2022) Lamkarkach, Farida; Apel, Petra; Meslin, Matthieu; Kolossa-Gehring, MarikeWithin the European Joint Program on Human Biomonitoring HBM4EU, human biomonitoring guidance values (HBM-GVs) for the general population (HBM-GVGenPop) or for occupationally exposed adults (HBM-GVWorker) are derived for prioritized substances including dimethylformamide (DMF). The methodology to derive these values that was agreed upon within the HBM4EU project was applied. A large database on DMF exposure from studies conducted at workplaces provided dose-response relationships between biomarker concentrations and health effects. The hepatotoxicity of DMF has been identified as having the most sensitive effect, with increased liver enzyme concentrations serving as biomarkers of the effect. Out of the available biomarkers of DMF exposure studied in this paper, the following were selected to derive HBM-GVWorker: total N-methylformamide (tNMF) (sum of N-hydroxymethyl-N-methylformamide and NMF) and N-acetyl-S-(N-methylcarbamoyl)cysteine (AMCC) in urine. The proposed HBM-GVWorker is 10 mgL-1 or 10 mgg-1 creatinine for both biomarkers. Due to their different half-lives, tNMF (representative of the exposure of the day) and AMCC (representative of the preceding days' exposure) are complementary for the biological monitoring of workers exposed to DMF. The levels of confidence for these HBM-GVWorker are set to "high" for tNMF and "medium-low" for AMCC. Therefore, further investigations are required for the consolidation of the health-based HBM-GV for AMCC in urine. © 2022 by the authorsVeröffentlichung Concurrent assessment of Phthalates/HEXAMOLL ® DINCH Exposure and Wechsler intelligence scale for children performance in three European cohorts of the HBM4EU aligned studies(2022) Rosolen, Valentina; Apel, Petra; Giordani, Elisa; Mariuz, Marika; Kolossa-Gehring, Marike; Lange, RosaInformation about the effects of phthalates and non-phthalate substitute cyclohexane-1,2-dicarboxylic acid diisononyl ester (HEXAMOLL® DINCH) on children's neurodevelopment is limited. The aim of the present research is to evaluate the association between phthalate/HEXAMOLL® DINCH exposure and child neurodevelopment in three European cohorts involved in HBM4EU Aligned Studies. Participating subjects were school-aged children belonging to the Northern Adriatic cohort II (NAC-II), Italy, Odense Child Cohort (OCC), Denmark, and PCB cohort, Slovakia. In each cohort, children's neurodevelopment was assessed through the Full-Scale Intelligence Quotient score (FSIQ) of the Wechsler Intelligence Scale of Children test using three different editions. The children's urine samples, collected for one point in time concurrently with the neurodevelopmental evaluation, were analyzed for several phthalates/HEXAMOLL® DINCH biomarkers. The relation between phthalates/HEXAMOLL® DINCH and FSIQ was explored by applying separate multiple linear regressions in each cohort. The means and standard deviations of FSIQ were 109 +/- 11 (NAC-II), 98 +/- 12 (OCC), and 81 +/- 15 (PCB cohort). In NAC-II, direct associations between FSIQ and DEHP's biomarkers were found: 5OH-MEHP+5oxo-MEHP (beta=2.56; 95% CI 0.58-4.55; N=270), 5OH-MEHP+5cx-MEPP (beta=2.48; 95% CI 0.47-4.49; N=270) and 5OH-MEHP (beta=2.58; 95% CI 0.65-4.51; N=270). On the contrary, in the OCC the relation between DEHP's biomarkers and FSIQ tended to be inverse but imprecise (p-value >/= 0.10). No associations were found in the PCB cohort. FSIQ was not associated with HEXAMOLL® DINCH in any cohort. In conclusion, these results do not provide evidence of an association between concurrent phthalate/DINCHHEXAMOLLR DINCH exposure and IQ in children. © 2022 by the authorsVeröffentlichung Time course of phthalate cumulative risks to male developmental health over a 27-year period: Biomonitoring samples of the German Environmental Specimen Bank(2020) Apel, Petra; Kortenkamp, Andreas; Conrad, André; Koch, Holger Martin; Kolossa-Gehring, Marike; Rüther, MariaIn several human biomonitoring surveys, changes in the usage patterns of phthalates have come to light, but their influence on the risks associated with combined exposures is insufficiently understood. Based on the largest study to date, the 27-year survey of urinary phthalate metabolite levels in 24-hour urine samples from the German Environmental Specimen Bank, we present a deep analysis of changing phthalate exposures on mixture risks. This analysis adopts the Hazard Index (HI) approach based on the five phthalates DBP, DIBP, BBP, DEHP and DINP. Calculations of the hazard index for each study participant included updated phthalate reference doses for anti-androgenicity (RfDAAs) that take account of new evidence of phthalates' developmental toxicity. The Maximum Cumulative Ratio (MCR) approach was used to establish whether a subjectâ€Ìs combined exposure was dominated by one phthalate or was influenced by several phthalates simultaneously. Generally, over the years there was a shift towards lower HIs and higher MCRs, reflecting an increased complexity of the combined exposures. The decade from 1988 to about 1999 was characterised by rather high HIs of between 3 and 7 (95th percentile) which were driven by exposure to DBP and DEHP, often exceeding their single acceptable exposures. Traditional single phthalate risk assessments would have underestimated these risks by up to 50%. From 2006 onwards, no study participant experienced exposures above acceptable levels for a single phthalate, but combined exposures were still in excess of HI = 1. From 2011 onwards most individuals stayed below HI = 1. In interpreting these results, we caution against the use of HI = 1 as an acceptable limit and develop proposals for improved and more realistic mixture risk assessments that take account of co-exposures to other anti-androgenic substances also capable of disrupting the male reproductive system. From this perspective, we regard HIs between 0.1 and 0.2 as more appropriate for evaluating combined phthalate exposures. Assessed against lowered HIs of 0.1 - 0.2, the combined phthalate exposures of most study participants exceeded acceptable levels in all study years, including 2015. Continued monitoring efforts for phthalate combinations are required to provide the basis for appropriate risk management measures. © 2020 The Authors.Veröffentlichung How to use human biomonitoring in chemical risk assessment: methodological aspects, recommendations, and lessons learned from HBM4EU(2023) Santonen, Tiina; Mahiout, Selma; Apel, Petra; Alvito, Paula; Kolossa-Gehring, Marike; Gerofke, Antje; Lange, RosaOne of the aims of the European Human Biomonitoring Initiative, HBM4EU, was to provide examples of and good practices for the effective use of human biomonitoring (HBM) data in human health risk assessment (RA). The need for such information is pressing, as previous research has indicated that regulatory risk assessors generally lack knowledge and experience of the use of HBM data in RA. By recognising this gap in expertise, as well as the added value of incorporating HBM data into RA, this paper aims to support the integration of HBM into regulatory RA. Based on the work of the HBM4EU, we provide examples of different approaches to including HBM in RA and in estimations of the environmental burden of disease (EBoD), the benefits and pitfalls involved, information on the important methodological aspects to consider, and recommendations on how to overcome obstacles. The examples are derived from RAs or EBoD estimations made under the HBM4EU for the following HBM4EU priority substances: acrylamide, o-toluidine of the aniline family, aprotic solvents, arsenic, bisphenols, cadmium, diisocyanates, flame retardants, hexavalent chromium [Cr(VI)], lead, mercury, mixture of per-/poly-fluorinated compounds, mixture of pesticides, mixture of phthalates, mycotoxins, polycyclic aromatic hydrocarbons (PAHs), and the UV-filter benzophenone-3. Although the RA and EBoD work presented here is not intended to have direct regulatory implications, the results can be useful for raising awareness of possibly needed policy actions, as newly generated HBM data from HBM4EU on the current exposure of the EU population has been used in many RAs and EBoD estimations. © 2023 The Author(s)Veröffentlichung Concept for the evaluation of carcinogenic substances in population-based human biomonitoring(2022) Wollin, Klaus-Michael; Apel, Petra; Chovolou, Yvonni; Kolossa-Gehring, Marike; Deutschland. Umweltbundesamt. Kommission Human-BiomonitoringThe Human Biomonitoring (HBM) Commission at the German Environment Agency holds the opinion that for environmental carcinogens for which no exposure levels can be assumed and are harmless to health, health-based guidance values corresponding to the classical definition of the HBM-I or HBM-II value cannot be established. Therefore, only reference values have been derived so far for genotoxic carcinogens from exposure data of the general population or subpopulations. The concept presented here opens up the possibility of performing health risk assessments of carcinogenic substances in human biomonitoring, and thus goes decisively beyond the purely descriptive statistical reference value concept. Using the presented method, quantitative dose descriptors of internal exposure can be derived from those of external exposure, provided that sufficient toxicokinetic information is available. Dose descriptors of internal exposure then allow the simple estimate of additional lifetime cancer risks for measured biomarker concentrations or, conversely, of equivalent concentrations for selected risks, such as those considered as tolerable for the general population. HBM data of chronic exposures to genotoxic carcinogens can thus be used to assess the additional lifetime cancer risk referring to the general population and to justify and prioritize risk management measures. © 2022 by the authorsVeröffentlichung Human biomonitoring initiative (HBM4EU) - Strategy to derive human biomonitoring guidance values (HBM-GVs) for health risk assessment(2020) Apel, Petra; Rouselle, Christophe; Kolossa-Gehring, Marike; Lange, RosaThe European Joint Program "HBM4EU" is a joint effort of 30 countries and the European Environment Agency, co-funded under the European Commission's Horizon 2020 program, for advancing and implementing human biomonitoring (HBM) on a European scale and for providing scientific evidence for chemical policy making. One important outcome will be a Europe-wide improvement and harmonization of health risk assessment following the coordinated derivation or update of health-related guidance values referring to the internal body burden. These guidance values - named HBM guidance values or HBM-GVs - can directly be compared with HBM data. They are derived within HBM4EU for priority substances identified by the HBM4EU chemicals prioritization strategy based on existing needs to answer policy relevant questions as raised by national and EU policy makers. HBM-GVs refer to both the general population and occupationally exposed adults. Reports including the detailed reasoning for the values' proposals are subjected to a consultation process within all partner countries of the consortium to reach a broad scientific consensus on the derivation approach and on the derived values. The final HBM-GVs should be applied first within the HBM4EU project, but may also be useful for regulators and risk assessors outside this project. The subsequent adoption of derived HBM-GVs at EU-level needs to be discussed and decided within the responsible EU bodies. Nevertheless, the establishment of HBM-GVs as part of HBM4EU is already a step forward in strengthening HBM-based policy efforts for public and occupational health. The strategy for deriving HBM-GVs which is based on already existing approaches from the German HBM Commission, the French Agency for Food, Environmental and Occupational Health & Safety (ANSES) as well as from the US-based scientific consultant Summit Toxicology, the allocation of a level of confidence to the derived values, and the consultation process within the project are comprehensively described to enlighten the work accomplished under the HBM4EU initiative. © 2020 The Author(s).Veröffentlichung A tiered approach for assessing individual and combined risk of pyrethroids using Human Biomonitoring Data(2022) Tarazona, Jose V.; Apel, Petra; Cattaneo, Irene; Niemann, Lars; Kolossa-Gehring, Marike; Weber, TillPyrethroids are a major insecticide class, suitable for biomonitoring in humans. Due to similarities in structure and metabolic pathways, urinary metabolites are common to various active substances. A tiered approach is proposed for risk assessment. Tier I was a conservative screening for overall pyrethroid exposure, based on phenoxybenzoic acid metabolites. Subsequently, probabilistic approaches and more specific metabolites were used for refining the risk estimates. Exposure was based on 95th percentiles from HBM4EU aligned studies (2014-2021) covering children in Belgium, Cyprus, France, Israel, Slovenia, and The Netherlands and adults in France, Germany, Israel, and Switzerland. In all children populations, the 95th percentiles for 3-phenoxybenzoic acid (3-PBA) exceeded the screening value. The probabilistic refinement quantified the risk level of the most exposed population (Belgium) at 2% or between 1-0.1% depending on the assumptions. In the substance specific assessments, the 95th percentiles of urinary concentrations in the aligned studies were well below the respective human biomonitoring guidance values (HBM-GVs). Both information sets were combined for refining the combined risk. Overall, the HBM data suggest a low health concern, at population level, related to pyrethroid exposure for the populations covered by the studies, even though a potential risk for highly exposed children cannot be completely excluded. The proposed tiered approach, including a screening step and several refinement options, seems to be a promising tool of scientific and regulatory value in future. © 2022 by the authorsVeröffentlichung Human biomonitoring reference values: Differences and similarities between approaches for identifying unusually high exposure of pollutants in humans(2019) Apel, Petra; Conrad, André; Kolossa-Gehring, Marike; Rucic, Enrico; Vogel, NinaIn exposure and risk assessment, the indication of unusually high exposure levels in humans to chemicals has been considered as an important objective for decades. To realize this objective, reference values (RV) need to be derived. However, while there is a tendency towards using the 95th percentile as a basis for deriving these reference values there is still no consensus. Moreover, side approaches have evolved including deriving RVs based on other percentiles, reporting multiple RVs or only reporting percentiles. The purpose of this article is to give an overview of the current literature, to point out differences and similarities between existing approaches, and to highlight important criteria for the derivation of RVs. We observe the majority of studies to base RVs on the 95th percentile and its 95% confidence interval which can been justified by statistical paradigms, present arguments for a single defined reference value, and discuss characteristics which call for more consistency. To conclude, our overview provides a first step towards a more homogenous and standardized derivation procedure to identify unusually high exposures in exposure science. © 2018 The Authors. Published by Elsevier GmbH.Veröffentlichung Time trend of exposure to the phthalate plasticizer substitute DINCH in Germany from 1999 to 2017: Biomonitoring data on young adults from the Environmental Specimen Bank (ESB)(2019) Kasper-Sonnenberg, Monika; Apel, Petra; Koch, Holger M.; Kolossa-Gehring, Marike; Rüther, MariaDINCH (cyclohexane-1,2-dicarboxylic acid-diisononyl ester) is a phthalate plasticizer substitute introduced into the market in 2002. It is increasingly used especially in the production of toys, food contact materials and medical devices. In this measurement campaign on 24-h urine samples of young adults (20-29 years) from the German Environmental Specimen Bank (ESB) collected in 2010, 2011, 2013, 2015 and 2017 (in total 300 samples, 60 samples/year) we analyzed three specific, oxidized DINCH metabolites (OH-MINCH: cyclohexane-1,2-dicarboxylic acid-mono(hydroxy-isononyl) ester; cx-MINCH: cyclohexane-1,2-dicarboxylic acid-mono(carboxy-isooctyl) ester, oxo-MINCH: cyclohexane-1,2-dicarboxylic acid-mono(oxo-isononyl) ester). We merged these data with earlier data of the ESB from the years 1999-2012 and are now able to report levels and time trends of internal DINCH exposure from 1999 to 2017. After first detections of the major oxidized DINCH metabolite OH-MINCH in 2006 (6.7%) detection rates rapidly increased to 43.3% in 2009, 80% in 2010 and 98.3% in 2011 and 2012. From the year 2013 on we could detect OH-MINCH in every urine sample analyzed. The median concentrations of OH-MINCH rapidly increased from 0.15 (Mü)g/L in 2010 to twice the concentration in 2011 (0.31 (Mü)g/L) with further increases in 2013 (0.37 (Mü)g/L), 2015 (0.59 (Mü)g/L) and 2017 (0.70 (Mü)g/L). Similar increases, albeit at lower detection rates and concentration levels, could be observed for cx-MINCH and oxo-MINCH. All metabolites strongly correlate with each other. For the ESB study population, DINCH exposures are still far below health based guidance values such as the German Human Biomonitoring Value (HBM-I; 4,500 (Mü)g/L for the sum of OH-MINCH and cx-MINCH) or the tolerable daily intake (TDI) of EFSA (1mg/kg/bw/d). The median daily DINCH intake (DI) calculated for 2017 was 0.23 (Mü)g/kg bw/d, thus 4,310-times lower than the TDI. The maximum DI calculated for one individual in 2012 (42.60 (Mü)g/kg bw/d) was a factor of more than 20 below the TDI. The ongoing increase in DINCH exposure needs to be closely monitored in the future, including populations with potentially higher exposures such as children. This close monitoring will enable timely exposure and risk reduction measures if exposures reached critical levels, or if new toxicological data lead to lower health based guidance values. DINCH belongs to the European Human Biomonitoring Initiative (HBM4EU) priority substances for which policy relevant questions still have to be answered. © 2019 Elsevier GmbH. All rights reserved.