Person:
Kolossa-Gehring, Marike

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Forschungsvorhaben
Berufsbeschreibung
Biologin
Toxikologin
Nachname
Kolossa-Gehring
Vorname
Marike
Name

Suchergebnisse

Gerade angezeigt 1 - 2 von 2
  • Veröffentlichung
    N-methylmalonamic acid (NMMA) as metabolite of methylisothiazolinone and methylchloroisothiazolinone in 24-h urine samples of the German Environmental Specimen Bank from 2000 to 2017
    (2020) Schettgen, Thomas; Kolossa-Gehring, Marike; Rüther, Maria; Weber, Till
    Methylisothiazolinone (MI) and the mixture of methylchloroisothiazolinone/methylisothiazolinone (MCI/MI, 3:1) are widespread biocides used in cosmetics, household products, paints or as disinfectant in air-conditioning systems. Exposure to these compounds has raised concerns due to their sensitizing potential, as rates of skin sensitization were reported to increase in the last decade. We have analyzed N-methylmalonamic acid (NMMA), a common metabolite of MI and MCI in 24-h urine samples of the German Environmental Specimen Bank collected from 480 participants (240 male/240 female) between the years 2000 and 2017. Using these data, we were able to calculate the overall daily intake of MI and/or MCI/MI (3:1) of the study participants and point out time trends. NMMA was determined in all urine samples investigated above the LOQ of 0.5 (my)g/L urine. Median and 95th percentile level of NMMA in all 24-h urine samples was 4.1 (my)g/g creatinine and 8.5 (my)g/g creatinine, respectively. This would correspond to a median and 95th percentile daily intake of 0.35 (my)g/kg bw and 0.71 (my)g/kg bw for exclusive uptake of MI and 0.64 (my)g/kg bw and 1.28 (my)g/kg bw for exclusive uptake of MCI/MI (3:1). We noted only slight variations over time for median exposures, but an increasing time trend in the 95th percentile exposure between 2006 and 2011 with a decrease in recent years, probably reflecting regulatory measures on MI and MCI/MI (3:1) in cosmetic products. Increasing knowledge on determinants of exposure to MI and/or MCI/MI (3:1) would be necessary to further lower exposure to these sensitizing compounds. © 2019 Elsevier Ltd. All rights reserved.
  • Veröffentlichung
    Metabolites of the alkyl pyrrolidone solvents NMP and NEP in 24-h urine samples of the German Environmental Specimen Bank from 1991 to 2014
    (2018) Ulrich, Nadin; Bury, Daniel; Koch, Holger Martin; Kolossa-Gehring, Marike; Rüther, Maria; Weber, Till
    Purpose The aim of this study was to get a first overview of the exposure to the solvents and reproductive toxicants N-methyl-2-pyrrolidone (NMP) and N-ethyl-2-pyrrolidone (NEP) in Germany. NMP and NEP metabolite concentrations were determined in 540 24-h urine samples of the German Environmental Specimen Bank collected from 1991 to 2014. With these data we were able to investigate NMP/NEP exposures over time and to evaluate associated risks. Methods NMP metabolites 5-hydroxy-N-methyl-2-pyrrolidone (5-HNMP) and 2-hydroxy-N-methylsuccinimide (2-HMSI) and NEP metabolites 5-hydroxy-N-ethyl-2-pyrrolidone (5-HNEP) and 2-hydroxy-N-ethylsuccinimide (2-HESI) were determined by stable isotope dilution analysis using solid phase extraction followed by derivatization (silylation) and GCâ€ÌEIâ€ÌMS/MS. Results We were able to quantify 5-HNMP and 2-HMSI in 98.0 and 99.6% and 5-HNEP and 2-HESI in 34.8 and 75.7% of the samples. Metabolite concentrations were rather steady over the timeframe investigated, even for NEP which has been introduced as an NMP substitute only in the last decade. Calculated median daily intakes in 2014 were 2.7 Ìg/kg bw/day for NMP and 1.1 Ìg/kg bw/day for NEP. For the combined risk assessment of NMP and NEP exposure, the hazard index based on the human biomonitoring assessment I values (HBM I values) was less than 0.1. Conclusions Based on the investigated subpopulation of the German population, individual and combined NMP and NEP exposures were within acceptable ranges in the investigated timeframe. Sources of NEP exposure in the 90s and 00s remain elusive. © Springer-Verlag GmbH Germany, part of Springer Nature 2018