Person: Kolossa-Gehring, Marike
Lade...
E-Mail-Adresse
Geburtsdatum
Forschungsvorhaben
Organisationseinheiten
Berufsbeschreibung
Biologin
Toxikologin
Toxikologin
Nachname
Kolossa-Gehring
Vorname
Marike
Name
3 Ergebnisse
Suchergebnisse
Gerade angezeigt 1 - 3 von 3
Veröffentlichung Substitutes mimic the exposure behaviour of REACH regulated phthalates(2021) Apel, Petra; Kolossa-Gehring, Marike; Lange, Rosa; Lemke, Nora; Debiak, Malgorzata; Murawski, Aline; Weber, TillThe population is constantly exposed to potentially harmful substances present in the environment, including inter alia food and drinking water, consumer products, and indoor air. Human biomonitoring (HBM) is a valuable tool to determine the integral, internal exposure of the general population, including vulnerable subgroups, to provide the basis for risk assessment and policy advice. The German HBM system comprises of five pillars: (1) the development of suitable analytical methods for new substances of concern, (2) cross-sectional population-representative German Environmental Surveys (GerES), (3) time trend analyses using archived samples from the Environmental Specimen Bank (ESB), (4) the derivation of health-based guidance values as a risk assessment tool, and (5) transfer of data into the European cooperation network HBM4EU. The goal of this paper is to present the complementary elements of the German HBM system and to show its strengths and limitations on the example of plasticizers. Plasticizers have been identified by EU services and HBM4EU partners as priority substances for chemical policy at EU level. Using the complementary elements of the German HBM system, the internal exposure to classical phthalates and novel alternative plasticizers can be reliably monitored. It is shown that market changes, due to regulation of certain phthalates and the rise of substitutes, are rapidly reflected in the internal exposure of the population. It was shown that exposure to DEHP, DiBP, DnBP, and BBzP decreased considerably, whereas exposure to the novel substitutes such as DPHP, DEHTP, and Hexamoll®DINCH has increased significantly. While health-based guidance values for several phthalates (esp. DnBP, DiBP, DEHP) were exceeded quite often at the turn of the millennium, exceedances today have become rarer. Still, also the latest GerES reveals the ubiquitous and concurrent exposures to many plasticizers. Of concern is that the youngest children showed the highest exposures to most of the investigated plasticizers and in some cases their levels of DiBP and DnBP still exceeded health-based guidance values. Over the last years, mixture exposures are increasingly recognized as relevant, especially if the toxicological modes of action are similar. This is supported by a cumulative risk assessment for four endocrine active phthalates which confirms the still concerning cumulative exposure in many young children. Given the adverse health effects of some phthalates and the limited toxicological knowledge of substitutes, exposure reduction and surveillance are needed on German and EU-level. Substitutes need to be monitored, to intervene if exposures are threatening to exceed acceptable levels, or if new toxicological data question their appropriateness. It is strongly recommended to reconsider the use of plastics and plasticizers. © 2021 Published by Elsevier GmbH.Veröffentlichung Risk assessment for irritating chemicals - derivation of extrapolation factors(2021) Mangelsdorf, Inge; Schröder, Katrin; Escher, Sylvia E.; Kolossa-Gehring, Marike; Debiak, MalgorzataIrritation of the eyes and the upper respiratory tract are important endpoints for setting guide values for chemicals. To optimize the use of the often-limited data, we analysed controlled human exposure studies (CHS) with 1-4 h inhalation of the test substance, repeated dose inhalation studies in rodents, and Alarie-Tests and derived extrapolation factors (EF) for exposure duration, inter- and intraspecies differences. For the endpoint irritating effects in the respiratory tract in rodents, geometric mean (GM) values of 1.9 were obtained for the EF for subacute ->subchronic (n = 16), 2.1 for subchronic -> chronic (n = 40), and 2.9 for subacute -> chronic (n = 10) extrapolation. Based on these data we suggest an EF of 2 for subchronic -> chronic and of 4 for subacute -> chronic extrapolation. In CHS, exposure concentration determines the effects rather than exposure duration. Slight reversible effects during 4 h exposure indicate that an EF of 1 can be considered for assessing chronic exposures. To assess species extrapolation, 10 chemicals were identified with both, reliable rat inhalation studies and CHS. The GM of the ratio between the No Observed Adverse Effect Concentration (NOAEC) in rats and humans was 2.3 and increased to 3.6 when expanding the dataset to all available EF (n = 25). Based on these analyses, an EF of 3 is suggested to extrapolate from a NOAEC in a chronic rat study to a NOAEC in a CHS. The analysis of EFs for the extrapolation from a 50% decrease in respiratory frequency in the Alarie test in mice (RD50) to a NOAEC in a CHS resulted in a GM of 40, for both, the reliable (n = 11) and the overall dataset (n = 19). We propose to use the RD50 from the Alarie test for setting guide values and to use 40 as EF. Efs for intraspecies differences in the human population must account for susceptible persons, most importantly for persons with chemical intolerance (CI), who show subjective signs of irritation at low concentrations. The limited data available do not justify to deviate from an EF of 10 - 20 as currently used in different regulatory settings. © 2020 The Authors.Veröffentlichung Corrigendum to "Substitutes mimic the exposure behaviour of REACH regulated phthalates - A review of the German HBM system on the example of plasticizers"(2022) Apel, Petra; Kolossa-Gehring, Marike; Lange, Rosa; Lemke, Nora; Debiak, Malgorzata; Murawski, Aline; Weber, Till