Person:
Bannick, Claus Gerhard

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Forschungsvorhaben
Berufsbeschreibung
Nachname
Bannick
Vorname
Claus Gerhard
Name

Suchergebnisse

Gerade angezeigt 1 - 2 von 2
  • Veröffentlichung
    Analysis of polyethylene microplastics in environmental samples, using a thermal decomposition method
    (2015) Dümichen, Erik; Bannick, Claus Gerhard; Barthel, Anne-Kathrin; Braun, Ulrike; Brand, Kathrin; Jekel, Martin; Senz, Rainer
    Small polymer particles with a diameter of less than 5 mm called microplastics find their way into the environment from polymer debris and industrial production. Therefore a method is needed to identify and quantify microplastics in various environmental samples to generate reliable concentration values. Such concentration values, i.e. quantitative results, are necessary for an assessment of microplastic in environmental media. This was achieved by thermal extraction in thermogravimetric analysis (TGA), connected to a solid-phase adsorber. These adsorbers were subsequently analysed by thermal desorption gas chromatography mass spectrometry (TDS-GC-MS). In comparison to other chromatographic methods, like pyrolyse gas chromatography mass spectrometry (Py-GC-MS), the relatively high sample masses in TGA (about 200 times higher than used in Py-GC-MS) analysed here enable the measurement of complex matrices that are not homogenous on a small scale. Through the characteristic decomposition products known for every kind of polymer it is possible to identify and even to quantify polymer particles in various matrices. Polyethylene (PE), one of the most important representatives for microplastics, was chosen as an example for identification and quantification.Quelle: http://www.sciencedirect.com
  • Veröffentlichung
    Garment ageing in a Laundry care process under household-like conditions
    (2023) Heller, Claudia; Altmann, Korinna; Bannick, Claus Gerhard; Braun, Ulrike; Kerndorff, Alexander
    This study reflects typical consumer textile washing behaviour while taking into account existing standards in the household appliance and garment industries. Two garments were washed repeatedly with artificial dirt and detergent 30 times. The collected washing water was separated using fractional filtration. Textile physical tests were used to follow property changes of the garments, the microplastic release is determined using thermoextraction/desorbtionâ€Ìgas chromatography/mass spectrometry and the total organic carbon was measured as a sum parameter for the organic bonded carbon. This article shows the importance of a reality-based approach when investigating microplastics of textile origin in the laundry care process. Deposits of detergent and dirt on the textiles were detected. The total mass of sieve residues was much higher than the release of synthetic polymers. The cotton content of the garments causes a much higher fibre release than synthetic fibres. Both will lead to false results by purely gravimetric analysis because nonpolymer fibres will be included microplastic mass. The results cannot be generalised only by the main polymer type, knowledge of the textile construction must be included for final evaluation. © 2023 Wiley-VCH GmbH.